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SUMMARY 

The numerical computation of unsteady airloads acting upon thin airfoils 

with multiple leading and trailing edge controls in two dimensional ventilated 

subsonic wind tunnels is studied. The foundation of the computational method 

is strengthened with a new and more powerful mathematical existence and 

convergence theory for solving Cauchy singular integral equations of the first 

kind, and the method of convergence acceleration by extrapolation to the limit 

is introduced to analyze airfoils with flaps. New results are presented for 

steady and unsteady flow, including the effect of acoustic resonance between 

ventilated wind tunnel walls and airfoils with oscillating flaps. 
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§I; Introduction1 

The theory of aerodynamic interference is necessary to extrapolate wind tunnel 

test data to free flight conditions. Analytically the wind tunnel problem is more 

difficult than the free air problem because of the presence of the wind tunnel walls, 

although computationally it may be checked against known free air results. However, 

the physical validity of wind tunnel interference theories must be established by 

the more stringent comparison with experimental data for both the free air and wind 

tunnel conditions. 

Physically the nature of wind tunnel flow is highly complex so that consider- 

able simplification of the theory is necessary in order to produce useful results. 

Most existing wind tunnel theories, see e.g., [l], 121, [3], [43*, are based on far 

field effects under the assumption ofinviscidlinear potential flow. Clearly vis- 

cosity plays a major role in boundary layer and wall effects, as do nonlinearities 

in transonic flow. Although significant progress has been made in the general field 

of computational fluid mechanics in the past decade, the inclusion of viscosity and 

nonlinearities entails an order of magnitude more computational expense than the 

linear inviscid theories. 

In shock free flow over moderately thin airfoils, good correlation with experi- 

ment can be obtained using linear potential flow theory, and there remain open signi- 

ficant research problems of practical importance. Among these are the proper form 

or forms of the boundary condition at ventilated tunnel walls, the efficient compu- 

tation of unsteady airloads especially when flaps are present, and effects of acoustic 

resonance between oscillating airfoils and ventilated wind tunnel walls. 

In this report we discuss the problem of predicting unsteady airloads on thin 

airfoils in two dimensional subsonic flow through ventilated wind tunnels. Our pre- 

vious work [51, [61 is extended to include the problem of multiple leading and trail- 

ing edge controls, and to permit porous wind tunnel walls in steady flow. This work 

is based on the method of orthogonal polynomial pairs discovered originally by N.I. 

Akheizer [71 in the Soviet Union in 1945 and developed independently but later by 

S.R. Bland and his coworkers for the practical solution of airfoil problems t81, [91, 

1The authors wish to acknowledge the valuable help of Dr. Sanford Davis, Ms. Theda 

Grinnell and Mesrs. Charles Doughty, Paul Kriner and Steven Sedlacek. 

'Numbers in square brackets refer to the bibliography found in the REFERENCES in 

order of first citation, and may also give the page, section or chapter of interest. 



-2- 

1101. In section 2 below we set down the underlying partial differential equations 

and boundary conditions. Section 3 describes Bland's kernel of the integral equa- 

tion relating downwash to pressure for unsteady flow in slotted wall tunnels and 

section 4 describes the kernel for porous wall tunnels in steady flow. Sections 5 

and 6 review the theory of airfoil polynomials and Bland's collocation method. Al- 

though this is slightly repetitious of earlier work, we have simplified the notation 

somewhat and unified certain other concepts. Sections 7 and 8 discuss the calcula- 

tion of airloads and the method of representation of airfoil profiles possessing mul- 

tiple leading and trailing edge controls. Section 9 and the APPENDIX present'instruc- 

tions for the use of the computer program TWODI and a sample interactive input/output 

scenario. Sections 10 and 11 present a comprehensive analysis of convergence of col- 

location and other computational methods and of the method of extrapolation used to 

accelerate numerical convergence in the case of flaps. Section 12 shows how computa- 

tional efficiency can be further improved by identifying the singularities in the ker- 

nel and integrating them separately. Sections 13, 14 and the APPENDIX present numer- 

ical results for steady flow in porous wall tunnels and for steady and unsteady flow 

over airfoils with flaps in ventilated tunnels for frequency ranges which include 

resonance between the oscillating airfoil and the wind tunnel walls. In section 15, 

we offer our conclusions based on the present study and recommendations for future 

research. 
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$2. Basic eouations 

Consider a thin nearly planar airfoil undergoing simple harmonic motion at 

frequency w rad/sec about the center plane of a two dimensional ventilated wind 

tunnel (Figure 1). The flow is considered to be inviscid and strictly subsonic, 

and to be a small disturbance from the free stream flow. 

We point out that free air conditions are included as an important special 

case upon taking the walls to be infinitely far apart (~)a). 

1 cz=ReFx)exp(iot)) ~ 

Figure 1. Coordinate system and sign conventions 

In this study we are particularly interested in unsteady interference effects 

on airfoils with flaps but, in.general, we may allow the deflection amplitude ~LUIC- 

tion h to represent upper, lower or mean airfoil profiles as well as arbitrary aero- 

elastic shapes, including rigid body and control surface deflections. 

Deflection is measured positive downward so that positive streamwise deriva- 

tives correspond to positive angles of attack. Lift will be measured positive up-. 

ward, and pitching moment will be measured about the quarter chord. positive in the 

direction of increasing angle of attack (nose up). 
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Except where specifically stated to the contrary, all quantities are dimension- 

less- Lengths are nondimensionalized by the airfoil semichord b, pressures by the 

free stream dynamic pressure $ p, vi and, with the notable exception of Mach number, 

velocities are nondimensionalized by the free stream velocity v co- Following cus- 

tomnry practice, streamwise coordinates are measured positive downstream, having 

value -1 at the leading edge and +l at the trailing edge. 

Denote by w the downwash amplitude nondimensionalized by the free stream veloc- 

ity, 

w(x) = (-& + ik)h(x), (2.1) 

where k=wb/v oD is the reduced frequency based on semichord. Denote by C$ the pertur- 

bation velocity potential nondimensionalized by bvW and denote by p the perturbation 

pressure nondimensionalized by 3 p-vi. Then the perturbation velocity potential sat- 

isfies the unsteady wave equation 

r~2,+-~*(-& + ik)'$ = 0 (2.2) 

where M=v~/c m is the free stream Mach number (for simplicity we omit the subscript 

on M). The pressure is related to the velocity potential by 

p = -2(& + ik) I$. (2.3) 

When the boundary conditions at the upper and lower walls are the same, both 

the pressure and velocity potential can be shown to be antisymmetric functions of 

2; i.e., 

p(x,-2) = -p(x,z), l$l(x,-z) = -$l(x,z). (2.4) 

Since the pressure is assumed to be continuous everywhere in the flow field 

except across the airfoil where it is permitted to be discontinuous (vortex surface) 

and since the pressure is assumed to be continuous at the trailing edge (Kutta con- 

dition), we may write 
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P(X,O) = 0, 

P(X,O) = - $AP(X) 

lxl>l, (2.S1) 

I Ixl<l, (2.52) 

P(X,O) = 0, x = 1, (2.53) 

where Ap is the lifting pressure jump across the airfoil. 

At the surface of the airfoil, the flow must be tangent to the surface. Thus, 

21 = w(x), Ixl<l. (2.6) 
z=o 

The purely kinematical boundary condition (2.6) is exactly equivalent to the asser- 

tion that zero mass can flow through the surface of the airfoil. The corresponding 

statement for a closed wall wind tunnel is 

%I = 0, IXJ<“, 
2=+7-l 

which in view of (2.31, is equivalent to 

gr = 0, IX]<.=. 
z=+n 

(2.71) 

An open jet boundary is defined mathematically as one on which the perturbation 

pressure is zero (see, e.g., [l,p.471 or [2, p.411), 

Plzscn = 0, 1X1<=. (2.B1) 

An alternate formulation which is equivalent to (2.81)~ 

(2.83) +lz=+rl = 0, M-Q 

is obtained by integrating (2.3). 

We point out that an open jet boundary differs from free air because in the 

latter case the pressure perturbation due to the presence of a model will vanish 

in general only at infinity. 
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It has been known since the time of Prandtl [ll] (SeealsoGlauert [4,~.43],Garner 

et al 11, p.51 and Kraft [12,p.l]) that the closed wall and open jet boundary con- 

ditions (2.7) and (2.8) cause opposite interference effects in the sense that closed 

walls produce more lift than free air and open jets produce less. The desire to 

exploit these opposing effects to enable an interference free tunnel and to avoid 

the problem of choking has led to the construction of ventilated wind tunnels at 

various facilities. 

The physical flow at a ventilated wind tunnel is quite complex and depends, 

among other things, upon viscous and boundary layer phenomena as well as the detail 

construction of the walls themselves. However, at some distance away from the wall, 

the localized effects of individual slots or holes by which the tunnel is ventilated 

will blend into a more homogeneous effect, thereby permitting the introduction of 

homogeneous boundary conditions. 

Two types of homogeneous boundary conditions have been proposed, the so-called 

slotted wall boundary condition and the porous wall boundary condition. The slotted 

wall boundary is physically based on an accelerative or mass effect whereas the por- 

ous wall boundary condition is based on a viscous effect. However, this simple dis- 

tinction seems not to be generally made. Therefore, to emphasize the underlying 

principles of mechanics involved, we shall adopt in the sequel the more descriptive 

terms mass effect and viscous effect. 

The mass effect boundary condition may be developed heuristically as follows. 

Recall that Euler's vector equation for conservation of linear momentum in a perfect 

fluid is 

(physical dimensions) - op = pa. - (2.91) 

If one applies this law across a ventilated wind tunnel wall over a distance .c such 

that local effects at the wall may be neglected, there results 

P 
(physical dimensions) (2.92 

where the pressure gradient has been approximated by a finite difference quotient 

and where vn is the average velocity component normal to the wall. Neglecting the 

difference between the plenum chamber pressure and the free stream atmospheric pres- 

sure (this assumption can be removed [13]), and nondimensionalizing all quantities 
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gives 

(2.93) 

where 

Regarding the length ratio n as an empirically determined quantity in order to 

account for only part of the wall being closed, we may call p the mass effect 

ventilation coefficient and we call (2.93) the mass effect boundary condition. 

An alternate form of (2.93) that is often used, especially in steady flow, is 

The mass effect boundary condition (2.93) was apparently first proposed by 

Davis and Moore [141 in1953. Althoughtheir basic analysis does not seem to preclude 

application to other forms of wall ventilation, they were primarily interested in 

slotted wall tunnels and called (2.93) the slotted wall boundary condition. 

Formulas for estimating the mass effect ventilation coefficient 11 for slotted 

wall tunnels in terms of the slot geometry are given by Davis and Moore [141, 

Guderley [151, Baldwin, Turner and Knechtel [161, Chen and Mears t171 (see [13 I), 

Goethert [2 1, Garner et al [l I, Pindzola and Lo [181, Barnwell [131 and others. 

Recently, Barnwell [191 has concluded that better agreement with experiment 

using the boundary condition (2.9) is obtained if v is determined by correlation 

with experiment rather than if it is calculated using existing theories based on 

slot geometry, etc. 

The viscous effect boundary condition is based on the assumption that the 

wall is porous in the sense that the mass flow rate through the wall is proportional 

to the difference in pressure between the inside of the wind tunnel and the plenum 

chamber; i.e., 

(physical dimensions) 

where v 
P 

is a physical constant having dimensions of velocity and which depends upon 
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the porosity of the wall and the properties of the fluid in the wind tunnel 

ally air). 

If vp is nondimensionalized by the free stream velocity according to 

"P 
P 

v=-= tunnelmPplenum, 

Vcn nvnv, 

(Llsu- 

(2.102) 

and if the difference between the plenum chamber pressure and the free stream atmos- 

pheric pressure is again neglected, then it can be shown that the viscous effect 

boundary condition in the form 

p = +2vE , 2 = +Tj - 

follows. The dimensionless quantity v is called the viscous effect ventilation co- 

efficient. A convenient alternate form of (2.103) is 

a . ap (j-x+ik)P+Vz = 0, z = +r7. (2.104) 

The boundary condition described by (2.10) clearly represents a viscous mechan- 

ism in the sense that force in the form of pressure is proportional to velocity. 

Sometimes this is loosely referred to as Darcy's law [20] a la soil mechanics but 

that does not seem to be an appropriate attribution in the present context. Such 

a viscous effect boundary condition for wind tunnels was proposed apparently first 

by Goodman [21] in 1950 for steady flow. Further investigations along this line 

have been made by Baldwin, Turner and Knechtel 1161, Woods [221 and [23], Drake [241 

and [251, Parkinson and Lim [26], Ebihara [27], Mokry [28], Kraft and Lo [29) and 

others. Woods and Drake considered walls with finite length porous sections and 

Drake considered unsteady flow but gave no numerical results for subsonic flow. 

In connection with Barnwell's conclusions cited above concerning the difficulty 

of obtaining good agreement with experimental data using the so-called slotted wall 

(mass effect) boundary condition, we note that experimental evidence exists [261 

which indicates that the viscous effect boundary condition is more realistic for 

slotted wall tunnels with narrow slots (see also [28,p.481). 

A complete understanding of the mass effect and viscous effect boundary condi- 

tions has yet to be achieved. On the theoretical side, this is partly because the 
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kernel of the integral equation relating downwash and pressure has not been explicit- 

ly calculated for the latter. However, a computationally tractable form of the ker- 

nel for the unsteady mass effect boundary condition was,presented by Bland [8] in 

1968. This is discussed briefly in section 3 below and further information may be 

found in [5] and [9]. Extensive calculations using Bland's kernel were first 

given in 1978 by us [8] and a rigorous existence and convergence theory for the nu- 

merical solution method was established. While the bulk of our present analysis 

centers around Bland's kernel, we present in section 4 an analysis of the kernel 

for the viscous effect boundary condition for purely porous wind tunnel walls. 

In section 13 we present calculations for steady airloads using the viscous effect 

boundary condition over the full range of the Mach number, height to chord ratio and 

ventilation coefficient v. 

Most of the existing wind tunnel interference theory is founded on the incom- 

plete point of view that the effect of the boundary conditions at the wall can be 

determined by knowing the far flowfield characteristics of the airfoil. While this 

viewpoint has produced useful and simple engineering approximations to angle of at- 

tack and Mach number "corrections", it suffers by neglecting the truly coupled 

nature of interference between the walls and the model. Thus, any rational theory 

of wind tunnel interference must be based on an appropriate boundary value problem 

in which this coupling is explicitly present. The analysis used in this report is 

based on an integral equation method which correctly accounts for such coupling. 

Whether the governing boundary value problem is solved directly via partial 

differential equations or by reduction to an integral equation is just a matter of 

computational method. However, whereas integral equations are more difficult to 

formulate, they enjoy the advantage that the dimension of the space in which the 

problem must be solved is reduced by one. This undoubtedly accounts for integral 

equations being a frequent method of choice in subsonic and supersonic flow, and 

there is now evidence [29] to suggest that in transonic flow as well, integral 

equation methods may be an order of magnitude faster than PDE methods. 
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53. Bland's integral equation 

Based on the preceding discussion, the boundary value problem for flow in 

a ventilated wind tunnel with the mass effect boundary condition may be completely 

formulated on the lower (or upper) half of the infinite strip 

Q = C(x,z) 1 Ix]- & ozg} (3.1) 

using equations (2-l)-(2.31, (2.5), (2.6) and (2.g3)- Introducing streamwise Fourier 

transform pairs 

co 

I . 
e -=Sxf(x,z)dx, 

--m 

(3.21) 

f(x,z) =A 
m 

i . 
e =SX;(s,z)ds, 

--m 

with the property that 

,. ,. 
(g) = isf, 

it follows that 

2* 
&g -8*(s-S 1 (s+ E)i) = 0, o<zq, -_ 

Ap(E)dE, z = 0, 

I z = nr 

which can be solved, giving 

1 
G(s,z) = ---zxz BW cash B(n-z)u +sinh B(n-z)o 

2J2ll Bvc cash Bno + sinh Bna 
I 

(3.22) 

(3.23) 

(3.31) 

(3.32) 

(3.33) 

(3.41) 
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where 

u(s) = A-f$) (s+Sl . (3.42) 

Equation (2.6) for the downwash may be restated as 

I 
A 

1 m . 
w(x) = Jg elSX (3 y,odS t 

-02 

and from equation (2.3) it follows that 

$=-L-I;* 
2(s+k) 

Combining equations (3.41), (3.5) and (3.6) results in 

(3.5) 

(3.6) 

w(x) = $ 
BAP(S) a is(x-S) io(s) 

4 
Bvu sinh f3nu + cash Bna dSds 

2(s+k) 6nu cash Bnu + sinh Bnu . (3.7) 

Equation (3.7) may be interpreted as an integral equation of the form 

w(x) = -& I 1 
K(x-5) Ap(C)dC, 

-1 
(3.8) 

where the kernel is given by 

K(x,k,M,n,u) = io(s) f3pu sinh Bnu + cash Bnu ds 
2(s+k) BUU cash Bnu + sinh Bnu - (3.9) 

--m 

The inverse Fourier transform (3.9) was evaluated by Bland [ 8 1 following an 

extensive analysis. He showed that 

K(x,k,M,n,U) = $ - lk log 1x(+ 5 (l+sgn(xN 
l+uk tanh kn 

i3* n+i 
exp(-ikx) 

tanh kn 

- 2 [sgn(x)S' ( $$)-+S (kjlexp 9 

+ ?- [csch = -z+ (exp 
. 2 

2i3rl 2i3n 
=x-l) csch %I 

82 

. 2 
- $[log(i tanh z) - (exp T - 1) log tanh #I, (3.10) 
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where 

1 
S(6) = 7 I? exp(-in&) - - 

n 
exp [- (n- $~611 

n=l 7r(n-$) 

S 1 = , 
n 

[l + 1+&* I[1 + (WI 
& 

in = x,&q 5, = F 
n 

tan A, + yX, = 0, 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

Equation (3.8) is recognized as a Fredholm integral equation of the first kind. 

Its kernel, given by (3.10), identifies it further as a Cauchy singular equation be- 
1 

cause of the dominant ; singularity. The remainder of the kernel consists of a 

weaker, integrable logarithmic singularity followed by a continuous part. 

It is well-known (see, e.g. [5,p.l11) that solutions of such Cauchy singular 

integral equations are not unique unless the auxiliary Kutta condition, given in 

strong form by (2.53) or in weak form by 

lim!Ap(x) I< -, 
x+1- 

(3.121) 

is imposed. Then it follows also that solutions for Ap possess inverse square root 

singularities at the leading edge 

limIGAp(x)I<m 
x+-1+ 

and square root singularities 

1imJ Ap (xl - <m 
x+1- 4-G 

(3.122) 

(3.123) 

at the trailing edge. 
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In the case of steady flow in free air, Bland's kernel (3.10) reduces to 

the classical Prandtl-Glauert vortex kernel 

K(x,O,M,m,.) = L 
X 

(3.13) 

which consists of the Cauchy singularity alone. In this case, the &ngen inversion 

formula [381 (see also 1311, [321 and t5, §§2,911 holds, and (3.8) has the closed 

form solution 

(k=O, n==) Ap(x) = & /g i' /$$ w(c)dc. 
-1 

(3.14) 

In view of the above considerations concerning uniqueness, leading and trailing 

edge singularities and the Sghngen inversion formula, Bland changed the unknown in 

(3.8) from the pressure jump Ap to the pressure factor $ according to 

Ap(x) = z J l+x Q(x). 

Then (3.8) becomes 

w(x) = + 

(3.15) 

(3.16) 

where K is still given by (3.10). The theoretical advantage of (3.16) over (3.8) 

is that (3.16) has a unique solution with the correct leading and trailing edge 

singularities. Without the auxiliary Kutta condition, (3.8) does not have a unique 

solution and is thus not well posed [33,Ch.III,§6.2]. Since this reformulation of the 

airfoil integral equation into a well posed problem was first made by S.R. Bland 

181, [91, we shall refer to (3.16) as Bland's integral equation. 
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54. Extension to porous wall wind tunnels 

In a porous wall wind tunnel, the predominant mechanism by which ventilation 

is resisted is viscosity. The governing boundary value problem is given by equa- 

tions (2.1)-(2.6) together with the viscous effect boundary condition (2.104). 

Taking streamwise Fourier transforms as in section 3 gives the two point boundary 

value problem 

d*b 
- - &J*;, = 0 
dz* I o<zq, -_ 

Ap(E)dE, z = 0, 

v 2 + i(s+k)p = 0, z = T-). 

(4.11) 

(4.12) 

(4.13) 

Solving (4.1) gives 

1 p(s,z) = - - 8vU cash 8(n-z)U + i(s+k) sinh B(n-z)u 
2&Y f3v0 cash $TIU + i(s+k) sinh Bnu I (4.2) 

,. 
and relating p to the downwash using (3.5) and (3.6) results in 

BAp(c),is(x-c) iu(s) Bvu sinh Bnu + i(s+k) cash Bnu d.Sds 
4 2(s+k) Bvu cash Bnu + i(s+k) sinh Bnu . (4.3) 

Equation (4.3) may be interpreted as an extension of Bland's integral equation 

(3.16) to the viscous effect boundary condition (2.104). The kernel is given by 

K(x,M,k,n,v) = iu(s) Bwu sinh 6nu + i(s+k) cash f3nu ds 
2(s+k) Bvu cash Bnu + i(s+k) sinh Bnu ' (4.4) 

-co 

and depends upon Mach number, reduced frequency, height to chord ratio and the 

viscous effect ventilation coefficient. 

Technically, both (3.9) and (4.4) are inverse Fourier transforms in the dis- 

tributional sense [341. For this reason, their numerical computation is not straight- 

forward. However, for steady flow the kernel in (4.4) can be obtained easily in 

closed form. 
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Setting k = 0 in (4.4) gives 

. m 
K(x,M,nrv) = $ 

I 
,isx Bv sinh Bns + i cash f3ns ds 

Bv cash f3ns + i sinh Bns ' (4.5) 
-Co 

and introducing a compressible leakage angle 5 defined by 

(4.7) 

results in 

. - 

I 

. 

K(x,M,n,w) = $ e'SXtanh(Bns+i<)ds. 

-co 
(4.7) 

For infinite height to chord ratio, n = m, and we observe that (4.7) reduces to 

-. 

K(x) = $ 
I 

elSX sgn(s)ds = $, (4.8) 

which is the known classical result for steady compressible flow in a free atmosphere. 

The integrals in (4.5), (4.7) and (4.8) do not exist as ordinary Lebesgue (nor 

Riemann) integrals; instead they must be regarded as distributions. However, if we 

write 

K(x,M,~,v,) = $ + AK(x,M,II,v), 

then the inverse Fourier transform, 

. -. 
AK(x,M,n,v) = $ 

f 
elSX (tanh (Bvs+i<)-sgn(s))ds. 

-m 

(4.9) 

(4.10) 

for the incremental part AK of the kernel exists as the Cauchy principal value of an 

ordinary Legesgue integral. Splitting the integral (4.10) into two parts, we obtain 

--E 

AK(x,M,n,v) = i ti;( elSX 
+ f . 

.2 (Bns+iC) 

l+e2 (Bv+iC) 
as), 

--m E 

and expanding the denominators into geometric series gives 

--E 

AK(x,M,n,v) = i Isi 
I 

y (-l)n+l e (2nf3n+ix)s+2n<ids 
+ n=l -co 

I 
0103 

- i lim 1 (-lIn+' e (-2nBn+ix)s-2nSids 
E-t0 E n=l 
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For s f 0, these series are bounded by an absolutely integrable function, so by 

the dominated convergence theorem, integration and summation can be interchanged. 

Upon taking the limit as E + 0, 

AK(x,M,n,v) = & y t-1) 
n-lce2ngi e-2n<i) 

- - ~ 
n=l ix 

n+2Brl 
ix ' 

n- 2-B&-y 

which may be written as the imaginary part of a complex series 

AK(x,M,n,v) = & Im y 
(-,2i$ n 

n=l ix ‘ 
"-2% 

or as a real series 

AK(x,M,~,v) = & y (-ljn 
n sin 2nL;-- cos 2nl; 

267-l 
n=l n2+(&j2 

(4.111) 

(4.112) 

(4.113) 

The last series is the sum of two series which may be summed in closed form [35, 

Nos. 561, 5621. Thus, we obtain the incremental part of the kernel in closed form 

as 
CX 

1 
AK(x,M,n,v) = zc2 eXp(K) Brl) -- 

; sinh TIx x - 
2i3n 

(4.12) 

Adding the Cauchy singularity gives the complete kernel, 

<X 
1 

K(x,M,n,v) = z 2 
exp (~1 

; sinh -!!?- 
2Bn 

(4.13) 

We point out that, physically, AK represents the interference effect due to 

the presence of the wind tunnel walls since 

lim AK(x,M,~,v) = 0. 
rl- 

Thus, we are justified in referring to AK as the interference kernel for steady 

flow. Also, we observe that for a closed wall, (4.13) reduces to 

n 
K(x,M,n,=') = -- csch x, 

2t3n 2i3n 
(4.14) 

which is a result originally given by Runyan, Woolston and Rainey [36, Appendix] 

(see also Bland [9, p. 8391). 
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The parametric behavior of the interference kernel and the complete kernel 

can be displayed explicitly by writing 

BnAK(x,M,n,v) = F(c,r), (4.15) 

BnK(x,M,n,V) = $+ F(C,T), (4.16) 

where 

F(<,T) = 2 exp (Sr) 1 -- 
; sinh :T T 

(4.17) 

is a function of two parameters 5 and T given by 

5 = tan-l &, T = &. (4.18) 

Thus, our analysis reduces the original four parameters 

to only three 

The parameters 

could be expected from the Lorentz compressibility contraction (as pointed out by 

Kissner for unsteady flow (and by Glauert and Prandtl for steady flow)). The para- 

meter 

& 

could be expected from the previous result (4.14) for closed wall tunnels and rep- 
resents the ratio of the chordwise influence distance to the contracted height to 
chord ratio. These results were originally derived by Ebihara [27] using the method 
of images in conjunction with compressibility corrections to steady incompressible 
flow (see also Mokry [281). 

The ease of obtaining the interference kernel in terms of elementary functions 

can be attributed to the relative simplicity of steady flow. For unsteady flow, it 

seems unlikely that the inverse Fourier transform (4.4) would admit such a pat re- 

sult. If the singularities were removed, however, the interference kernel for un- 

steady flow in a wind tunnel with porous walls might be expressible as an ordinary 

integral. This integral, once it were obtained, could be attacked via infinite 

series or via numerical integration. For analytic functions, the Laguerre-Gaussian 
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quadrature rule [37] is convergent in the sense that weights WY and nodes xr are 

tabulated [381' such that 

I 

m N 
e -Xf(x)dx = lim 1 WTf(xy). 

0 Mm i=l 

On the other hand, the uniformly convergent series presented in (4.11) are not 

rapidly convergent. We have found that three decimal accuracy requires tens of 

thousands of terms; such behavior, even with convergence acceleration, is quite 

pronounced in the numerical computation of Bland's kernel (3.10)-(3.11). This 

poses the interesting question: from the standpoint of computational efficiency, 

is it better to calculate the continuous part of the kernel as an infinite series 

as has been customary in the past, or is it better to compute it as a Fourier trans- 

form? 

For future reference, we present tabulated values of the interference kernel 

and of the complete kernel in Tables 1 and 2. Two features may be noted. First, 

it is easy to show from (4.17) that 

lim F(<,T) = 5. 
T-t0 

(4.19) 

Second, we observe that 

lim F(~,T) = 0 if 0'1;<5, (4.201) 
Id" 

lim F(%,T) = 0, T+ -Co 
(4.202) 

Ill F(~,T) = IT. (4.203) 

Figures 2 and 3 depict the parametric behavior of the interference kernel and 

of the complete kernel for variable porosity tunnels. In Figure 2, it is seen that 

for 5 = 0 (the closed wall case), the interference kernel is an odd function of 

streamwise distance. Thus, upstream and downstream distances produce opposing in- 

terference effects. However, the interference downwash, given by 

1 - 
71 AK(x-C,M,n,v)$(S)dS, 

is skewed upstream by the singularity factor 

J 
1-5 
1+5 

so that upstream pressures have a greater effect on downwash than downstream pressures. 
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Also the interference kernel modifies the complete kernel so that the same pressure 

produces less downwash than in the free atmosphere. Reversing the argument, the 

same downwash in a closed wind tunnel corresponds to more pressure than in free 

air. As ventilation occurs, the leakage angle 

5 = tan-l(&) 

increases. This skews the interference kernel to the right as shown in Figure 2 

and increases the magnitude of the complete kernel as shown in Figure 3. Thus, 

increasing the ventilation causes upstream pressures to have a relatively greater 

interference effect than downstream pressures, and causes the same pressure to 

produce more downwash than in a closed tunnel. Again reversing the argument the 

kernels shown in Figures 2 and 3 indicate that as the ventilation increases, the 

airloads will decrease for the same downwash. 
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Table 1. 

T=6t g=oo 5=150 5=300 5=450 5=60° 5=750 <=900 

-8.00 -124989 -124999 -125000 
-7.00 -142804 -142849 .142856 
-6.00 -166413 -166614 -166656 
-5.00 .198780 .199671 -199911 
-4.00 .244133 -247941 .249278 
-3.00 -305109 -320465 .327466 
-2.50 .338078 -367819 -383275 
-2.00 .363985 -419427 -452270 
-1.50 -366207 .463787 -529767 
-1.00 -317431 -474650 .595656 

-.50 -191725 -413590 .608233 
0 0 .261799 .523599 

-50 -.191725 -061169 .349431 
1.00 -.317431 -.113161 -152240 
1.50 -.366207 -.221694 -.007674 
2.00 -. 363985 -.270395 -.112406 
2.50 -.338078 -.280850 -.170735 
3.00 -.305109 -.271430 -.197562 
4.00 -.244133 -.233282 -. 202359 
5.00 -.198780 -.195485 -.183282 
6.00 -ml66413 -.165447 -.160800 
7.00 -.142804 -.142528 -.140798 

-125000 
-142857 
.166664 
.199976 
-249746 
. 330658 
.391308 
-471725 
-574166 
-688791 
_ 778995 
-785398 
-678006 
. 497066 
-309284 
.154295 
-041147 

-.035548 
-.114239 
-.138102 
-.138445 - 
-.129990 - 

.125000 

.142857 

.166666 
-199994 
-249911 
-332114 
.395483 
.483251 
-604207 
-760473 
.928805 
1.04720 
1.05254 
.945087 
-778689 
-604510 
-448845 
-319792 
-136872 
.029176 
.030906 
.062435 

.- 
-125000 
-142857 
.166667 
-199998 
.249969 
-332777 
-397652 
.490078 
.624492 
-815644 
1.06023 
1.30900 
1.47944 
1.52719 
1.47387 
1.36451 
1.23333 
1.09915 
-852451 
.648516 
-486406 
-359791 

-125000 
-142857 
.166667 
. 200000 
-249989 
-333080 
.398780 
-494122 
.638189 
-858108 
1.17554 
1.57080 
1.96605 
2.28349 
2.50340 
2.64747 
2.74281 
2.80851 
2.89160 
2.94159 
2.97493 
2 -99874 

_8.00 -.124989 -.124911 -.124278 -F-~---.7?- -.119133 -.07735%-,._ 261871 =____3~.01659 .----.- 

Table 2. Steadv complete kernel BnK for variable porosity wind tunnel,s- 

T=g c=oo 5=150 5=300 5=450 5=60° 5=750 <=900 - 

-8.00 -.000011 -.000001 -. 000000 -. 000000 -.oooooo -. 000000 -. 000000 
-7.00 -.000053 -.000008 -.000001 -. 000000 -.oooooo -. 000000 -.oooooo 
-6.00 -.000254 -.000053 -.OOOOll -.000002 -.oooooo -.oooooo -. 000000 
-5.00 -.001220 -.000329 -.000089 -.000024 -.000006 -.000002 -. 000000 
-4.00 -.005867 -.002059 -.000722 -.000254 -.000089 -.000031 -.000011 
-3.00 -.028224 -.012868 -.005867 -.002675 -.001220 -.000556 -.000254 
-2.50 -.061922 -.032181 -.016725 -. 008692 -.004517 -.002348 -.001220 
-2.00 -.136015 -.080573 -.047730 -.028275 -.016749 -.009922 -.005878 
-1.50 -.300460 -.202880 -.136991 -.092501 -. 062459 -.042175 -.028478 
-1.00 -.682569 -.525350 -.404344 -.311209 -.239527 -.184356 -.141892 

-.50 -1.80828 -1.58641 -1.39177 -1.22101 -1.07120 -. 939766 -.824462 
0 km +m +m fm ?m fm +m 

-50 1.80828 2.06117 2.34943 2.67801 3.05254 3.05254 3.96605 
1.00 .682569 .886839 1.15224 1.49707 1.94509 2.52719 3.28349 
1.50 .300460 .444973 .658993 .975950 1.44536 2.14053 3.17007 
2.00 -136015 -229605 .387594 .654295 1.10451 1.86451 3.14747 
2.50 -061922 .119150 .229265 '.441147 .848845 1.63333 3.14281 
3.00 -028224 .061903 .135771 .297785 -653126 1.43249 3.14185 
4.00 .005867 -016718 .047641 .135761 .386872 1.10245 3.14160 
5.00 -001220 -004515 -016718 .061898 -229176 .848516 3.14159 
6.00 -000254 .001220 -005867 -028222 .135761 .653073 3.14159 
7.00 -000053 .000329 .002059 .012867 .080422 .502648 3.14159 
8.00 .OOOOll .000089 .000722 .005867 .047641 .386871 3.14159 
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Figure 3. Steady complete kernel for variable porosity wind tunnels --.. --- 
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95. Fourier theory of airfoil polvnomials 

In our previous work [5 1, two sets of orthogonal polynomials were used in 

the solution of Bland's integral equation. These polynomials are computationally 

well suited for unsteady flow in ventilated wind tunnels , probably because the air- 

loads for subcritical Mach numbers and nonresonant frequencies are well-behaved 

parametric extensions of the steady free air case which they solve so elegantly 

in closed form. From a theoretical viewpoint, they have unique mathematical pro- 

perties which provide efficient use of the abstract geometrical structure of the 

underlying Hilbert spaces of downwash and pressure functions. This section briefly 

summarizes some of their features. For additional information, see Bland [8 ] and 

[9 I, Ivanoff [7, Ch. 2 1, or Fromme and Golberg [5 1. 

Consider the case of steady flow in free air. A completely symmetrical theory 

between downwash and pressure will now be presented for this special case. To do 

this, (3.14) and (3.16) are viewed as a solution pair 

& 'b(E) dE = w(x), (5-11) 

-& w(S) dE = 'l'(x). (5.12) 

This may be written more briefly in operator notation as 

H$=w, 

H-l w = $- 
(5.21) 

(5.22) 

A sequence of linearly independent solution pairs to (5.2) is given by 

H y, = an, n = l,...,-, 

H-l cm = y n' n = l,...,m, 

(5.31) 

(5.32) 

where 
1 cos((n+cos 

-1 
x) 

a,(x) = 
J;; cos ($cos-lx) 

I (5.41) 

Yn(x) = 
1 sin((n-$)cos -1 x) 

G 
(5.42) 

1 sin(Fos-lx) 
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These functions satisfy the following recursion formulas 

al(x) = 
1 

g a2(x) = &-1+2x),..., a,+,(x) = 2x an+l(x)-an(x), (5.51) 

Y1(X) = k, Y,(X) = $1+2x) , - - . , Yn+2 (x) = 2x Yn+l (x) 9, (xl , (5.52) 

and are therefore polynomials. We call a, and y n the nth downwash and pressure poly- 

nomials, respectively. Collectively they are called airfoil polynomials. Their n-l 

zeros are given by 

an(x2) = 0; x2 = 2ir -COS -- i = l,..., n-l; n>2 
2n-1' -' 

y,q = 0; 5; = 
2i77 cos -; i = 1,. 2n-1 .., n-l; nL2, 

and are interdigitated according to 

One of the 

orthogonal with 

singularities: 

-1<5~-l<x;<...<5;<xn Cl. 
n-l 

more striking properties of the airfoil polynomials is that they 

respect to reciprocal weight functions with leading and trailing 

am(x)an(x)dx = 5 mn' 

j1 E ym(x)yn(x)dx = Bm. 
-1 

(5.61) 

(5.62) 

(5.63) 

are 

edge 

(5.71) 

(5.72) 

This leads to two generalized Fourier series representations, one for downwash, the 

other for pressure. To see this, define two complex Hilbert spaces 

I$ = If:[-1,ll +cI 

L; = {f:[-1,ll +@I 

(5.81) 

(5.e2) 

called downwash space and pressure space, with respective inner products 
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<f,g> = 
a 

(5.91.) 

(5.92) 

and norms 

((f(l a = J<f,f',x' (5.10$ 

llflly = my. (5.102) 

It can be shown that {an] and {y,} are complete orthonormal bases for and L2, 
Y 

respectively. Therefore, an arbitrary function in either space can be represented by 

generalized Fourier series using airfoil polynomials; i.e., 

m 

fEL2 => f = 1 <f,o > a ma 
m=l 

urn' 

feL; => f = 1 <f,Ym'y Ym. 
m=l 

(5.111) 

(5.112) 

Referring to the solution pair given by (5.11, we see that for steady flow in 

free air, 

WELZ => $EL2 & lh = y <w,a > 
Y m=l 

m a Y,r (5.121) 

$cL; => WCLi & w = y <JI,Y~>~ 
m=l 

am- 

Thus, in this fundamental special case, the pressure Fourier coefficients and the 

downwash Fourier coefficients are exactly equal; i.e., 

duly ’ = <w,a > , (5.13) 
my ma 

thereby providing an elegant and computationally powerful reformulation of the Sghngen 

inversion formula. 

Another way of viewing the result (5.13) is that if $ and w satisfy (5.1), then 
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they have the same length, or norm, in their respective space; i.e., 

H’!J = w =’ 11 $lb = 11 w IIa (5.14) 

In general, if T is a linear transformation between two Hilbert spaces ffl and ff2, 

T:Hl+, (5.15) 

and if we define the operator norm of T as 

where 11 -Iii is the norm on ffi,i=l,2, and if 

II41 = 1, 

then we say T is an isometry. By (5.13), H is an isometry; i.e., 

llHll= 1, i/H-ill = 1. 

(5.16) 

(5.17) 

(5.18) 

An isometry is an abstract generalization of a length preserving transformation and 

enjoys generalized properties of orthogonal, or unitary finite dimensional transform- 

ations. If T is defined in general as above, then the adjoint of T is the operator 

T*:t12 -f tfl (5.19) 

such that 

<T*xry'l = <x,Ty'2 (5.20) 

for every x&l and y~Hp, where <.,.>i are the inner products on Hi, i=1,2. It follows 

(see [51 for details) that the adjoint of H is its inverse; i.e., 

H” = H-l- (5.21) 
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Consequently, 

=> <f,Hglcr=<H-lf,g> 
Y 

, 

which is useful in reverse flow formulations. 

Certain specific Fourier expansions in terms of airfoil polynomials will be 

useful in the sequel. Let 

logx 5 = log Ix-El . 

Then it has been shown 18 1 that 

Y n+l(x) 
<logx,a > = - n=l, 

na 2n 
- (log2-$)Yn(x), 

Y n+l(x) Y,(X) Y 
<loqx,a > = - 

n-l(") n,2 
na 2n - 2n(n-1) + 2(n-1) ' - ' 

an+l(x) 
<logx,y ' = 2n + (log2-~)an(x), n=l, 

ny 

a 
ilogx,y > = n+l(x) _ 

n7' 2n 

These results are used in the solution 

an(X) a n-l(x) 
n>2. 2n(n-1) - 2(n-1) ' - 

of Bland's integral equation. 

volving flaps, jump functions and their powers given by 

k <x> = (max(O,x))k 

(5.22) 

(5.23) 

(5.241) 

(5.242) 

(5.243) 

(5.241+) 

For problems in- 

(5.25) 

are employed. We briefly indicate the method of computing their airfoil polynomial 

Fourier coefficients. To evaluate 

k <<x-a> ,Yn>y=; ' j:E (x-ajk y,(x)dx, 

use the changes of variables represented by 

x = cos8, a = case . a 

Since 
l-x I- 2 sin2 : 
-= 
1+x sin 8 

(5.26) 
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and 

Y,(X) = k 
sin(n+B 

sin $ 8 

I 

it follows from the elementary identity 

2 sin a sin B = cos(a-6) - cos(a+B), 

that 

k 
I 

e 
<<x-a> ,y > = 

ny 
a (cos 8-20s ea)k(cos(n-l)e-cOs ne)de. 

0 
(5.27) 

The advantage of (5.27) over (5.26) is that the integrand 

Fnk(e) = (cos e-c0s ea)k(~~~(n-l)e-cOs no) 

is an analytic function everywhere on [O,ea] and therefore (5.29) can be computed ac- 

curately and conveniently using ordinary Legendre-Gaussian quadrature. Thus, 

k <<x-a> ,y > 
nY 

Xyea) + EN, 

N where W and x N 
i i are weights and nodes of the N point Legendre-Gaussian quadrature rule, 

and where 

a 

is the error [x7,58.5]. The integrals (5.26) can be determined in closed form, although 

they are increasingly cumbersome for larger values of k. The following closed form in- 

tegrations are noted. 

<<x-a> 0 Iyl>y = J;; 21 tea-sinea), 

<<x-a> 0 ,y > = - 
sin(n-l)Ba ' 

nY 
j& ( n-l - s'nnneal , nz, 

8 sin 28 

<<x-a>,y > = f (sin 8 - f - 
lY 7l a 

4 a) 

(5.281) 

(5.282) 

- L cos ea(ea-sinea), 
J;; 

(5.291) 



sin e sin 28 sin 38 

<<x-a>,y > = $!+1”+ 4 a- 6 a) 
2Y ll 

- 2 cos 8, (sin ea - 

sin 28 

2 a) I (5.292) 

<<x-a>,y > = 
n-f 

j+ ( sin(n-2)e ' 

2 (n-2) 
a _ s'~~~~:~ea + sit:ea _ si~~~:::eaJ 

- 2 cam ea ( 
sin(n-l)ea sin ne 

n-l a), _ n>3. n (5.293) 

We also note for future reference the Jacobi-Gaussian quadrature formulas [371 

l+xN+l 
- f(xyl)+EN, 

-1 N+$ 

1 
N 

- 
7l 

f(x)dx = 1 f(S, N+l)+EN, 
n=l 

(5.301) 

(5. 302) 

..N+l where the nodes :. and xr+' are the zeros of the airfoil polynomials u 
1 Nfl and y 

N+l 

as given by (5-6), and where the error E N for continuous functions is proportional 

to the 2Nth derivative of the integrand at some point in the interval (-1,l). 

Sometimes it is desirable to convert from one airfoil polynomial basis to the 

other. Referring to (5.5), it is easy to show that 

al = YIP (5.311) 

a2 = 2y1 + Ygr (5.312) 

a3 = 251 - 2y2 + Y3P (5.313) 

a4 = 2.Q + 2~2 - 2~3 + ~4’ (5.314) 

a5 = 2yl - 2~2 + 2y3 - 2~4 + yg,... (5.315) 

and 

Yl = al' 

y2 = 2~1 + app 

Y3 = 2al + 2a2 + a31 

y4 = 2al + 2a2 + 2a3 + ah’ 

Y5 = 2al + 2a2 + 2a3 + ?a4 + as,... 

From (5.29 and (5.301, it appears that 

(5.32l) 

(5.322) 

(5.323) 

(5.32~+) 
(5.325) 

a n+l =Y n+l 
+ 2fl (-ljm+ly ; n=1,2,... 

m (5.331) 

Y n+l =a n+l + 2 t a 
m=l m 

; n = 1,2,... (5.332) 
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and in matrix notation that 

ai 

a2 

a3 

a4 

a5 

Yl 

Y2 

Y3 

Y4 

Y5 

= 

or, more briefiy 

i 

1 

-2 

2 = -2 

2 

I 

0 

1 

-2 

2 

-2 

0 

1 

2 

2 

2 

0 

0 

1 

-2 

2 

0 

0 

1 

2 

2 

0 0 . . . 

0 0 . . . 

0 0 . . . 

1 0 

-2 1 

Yl 

YP 

Y? 

Y4 

Y5 

al 

a2 

a3 

a4 

a5 

I 

[a,] = lGa ,I CanI, (5.351 

ty,} = [G~nlfan~. (5.352 

The problem of computing downwash from discrete displacement data will entail 

interpolation procedures and, differentiation as well. In any ascending polynomial 

basis, transformation matrices such as (5.34) will be lower triangular and when 

0 0 . . . 

0 0 . . _ 

0 0 . . . 

1 0 

2 1 

(5.341) 

(5.342) 

differentiation is performed they will be lower subtriangular. By differentiating the 
polynomial expressions (5.5) and recombining, one easily obtains 
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u; = 0, 

cth = 2al, 

ai = 2al + 4a2, 

ctt = 4al + 2a2 + 6a3t 

a; = 4ul + 6a2 + 2a3 + Baq.... 

yi = 01 

r; = 2Y1, 

Y; =-2~1 + 4~2, 

Y;, = 4~1 - 2~2 + 6~3’ 

y; =-4~1 + 6~2 - 2~3 + 8Y4r--- 

From this, it appears that in general 

ii 
a' 

n+l 
= -a' + 2n mZ1 'm' n = 1,2,... n 

y' 
n+l 

= yA+2n mg C-1) n+m y,;n = 1,2,... 

and 

al ’ 

a2 

a3 

a4 
= 2 

a5 

1 

Yl 

y2 
Y2 

y4 
= 2 

y5 

0 0 

1 0 

1 2 

2 1 

2 3 

. . 

. . 

. . 

0 0 

10 

-1 2 

2 -1 

-2 3 

. . 

. . 

. . 

0 

0 

0 

3 

1 

0 

0 

0 

3 

-1 

. 

. 

0 

0 

0 

0 

4 

0 

0 

0 

0 

4 

0 . . . 

0 . . . 

0 . . . 

. . 

. . 

. . 

“1 

a2 

a3 

a4 

“5 

(5.361) 
(5.362) 

(5.363) 

(5.364) 

(5.365) 

(5.371) 

(5.372) 

(5.373) 

(5.374) 

(5.375) 

(5. 3Bl) 

(5. 3B2) 

(5.391) 

(5.392) 
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Thus we may write the infinite matrix equations 

{a,)' = IDc&Ean}, 

(y,)' = d&y,}, 

where the differentiating matrices [Dk I and [DLI are as shown in (5.39) 

derivatives, we have 

Ia,1 (k) = [D;] (k)Can}, 

{y lCk) n = [DLI (k){ynj, 

. 

(5.401) 

(5.402) 

For higher 

(5.411) 

(5.412) 

where (k) refers to the order of the derivative on the left hand side and to the power 

of the differentiating matrix on the right hand side. 

Formulas expressing derivatives of the airfoil polynomials in terms the airfoil 

polynomials can also be derived in general by making use of their Fourier series pro- 

perties.l Since the derivative of a polynomial is a polynomial of one degree less, we 

have n-l 

aA (x) = 1 <aA,am>,am (x) , 
m=l 

where the Fourier coefficients are given by 

CC%' ,a> = 
n ma 

Referring to equation (5.4), the substitution 

x = cos 8, 

together with the use of elementary trigonometric identities leads to 

TI 

1 <ala> =; 
n' m a I 

1 sin(n+m-l)Cl+sin(n-m)e 
0 ((n-P sin 8 

1 cos(m+n-l)e+cos(n-m)B)de l<m<n-l -- 
2 I+COS e 

, -- - (5.42) 

'S.R. Bland, private communication, dated 3 August 197'7. 
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The tabulated integrals [39,p.3661 

lT 
n J 

sin nf3 - sin de = 0 if n is even, 
0 

ll 

1 
IT J 

sin ne - sin de = 1 if n is odd, 
0 

lTI - 
IT J 0 

l+c~sc~~ e d6=&2:~-11n,lal<l 

permit (5.42) to be calculated in general. Since for every pair (n,m) of integers, 

precisely one of n+m-1, n-m is odd, it follows that 

lTI * - 
J a 0 

sln(n+m-;ILi+;in(n-m)e de = 1. 

By evaluating the limits 

lim- + 
J 

71 COS(~+~-l)e+cos(n-m)e de 

a+1 
l+a cos e 

0 

= lim (&Qm+n-l + (Jix-l)n-m), 

a+l- J1-an am+n-l ~57 anmm 

one obtains 

1 
J 

71 cos(m+n-1) +cos(n-m)e - 
~+COS e 

de = (-1) n-m(2m-l). 
n 0 

Tn this manner, the following general formulas result, 

<aA,a > = 0 
mcx 

if mzn, 

<a,1,a > = n+m-1 if m<n & n-m is odd, 
ma 

<aA,a > ma 
= n-m-2 if m<n & n-m is even, 

<y;,y > = 0 
m Y 

if m?n, 

<Y1,rYm?y = n+m-1 if m<n & n-m is odd, 

‘YA,Y ' = n+m+2 if m<n & n-m is even, 
my 

which verify (5.39). 

(5.431) 

(5.432) 

(5.433) 

(5.434) 

(5.435) 

(5.436) 
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Although it appears that Bland was the first to make extensive application of 

the properties of the airfoil polynomials in unsteady flow problems, their use for 

solving singular integral equations goes back at least 40 years. In this regard 

we make the following historical observations. 

First it can be shown that they are suitably renormalized Jacobi polynomials. 

Multhopp [403 (see also [411) utilized Jacobi polynomials as early as 1938 to per- 

form chordwise numerical integration on the problem of steady three dimensional flow 

over wings. This is the origin of the successful technique of interdigitated col- 

location and quadrature points used later by Hsu [421 and others for unsteady flow, 

and in the special case of one collocation point it reduces to collocating the down- 

wash at the three-quarter chord. 

The fact that H is unitary was apparently first shown by Akheizer in 1945. We 

became aware of this fact through the recent publication of Ivanov's book t7, p.1331. 

This result was obtained using the fact that Hc n = Yn. This important property occurs 

as a particular case of a result given by Tricomi in 1951 [311 (see also [431) who in 

turn refers to Szggo's book, first published in 1939 [441. 

In the western aerodynamics literature the specific form of the pressure poly- 

nomials first appeared in a 1967 paper on unsteady narrow channel flow by Bland, 

Fhyne and Pierce [lo] and their properties were further developed in [8]. (See 

also [91.) 

In view of the above observations it seems appropriate to name the transforms 

H 

and 

as the Akheizer-Bland transforms. 

- 
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56. Solution by collocation of the inteqr_al-e_~:a~~:o~ 

Assume WELT and $eL2. Let Bland's integral equation (3.16) be written in 
Y 

operator notation as 

T$ = w. (6.1) 

Since the pressure polynomials Cy,) are a complete orthonormal basis for the pressure 

space 12. we have 
Y 

$ = c <$IYn’yYn. 
n=l 

Because of this, we seek an approximate solution $N to (6.1) of the form 

IbN = T 
n=l 

anNYn' 

where (anNI 
N 
n=l 

are to be determined. Substituting (6.3) into (6.1) gives 

C anN TYn + rN = WI 
n=l 

(6.2) 

(6.3) 

(6.4) 

where 

rN =w - W, = T(WN) (6.5) 

is the resulting downwash residual error. The general collocation equations are 

that 

rN(xm) = 0; m=l, . . . . Vl (6.6) 

N 
where i xm 1 1 are the collocation points. Equation (6.6) may be written in matrix 

form as 

[cfifnl I anN 1 = (w(x ,I, m (6.7) 

where [CL1 is the NxN collocation matrix given by 

CN = (T-f,) (x 1. (6.8) 
m 

To compute the collocaticm matrix,i t is convenient to spiit the operator T into 
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three parts. Referring to (3.10), we may write 

where H is the Akheizer-Bland 

(KLf) (x) = 

and where K 
C 

is the remaining 

T=H+KL+K, 
C 

transform, where K L is given by 

ik 
aB2 

(6.9) 

(6.10) 

part of the transformation with continuous kernel, 

(Kcf) (x) = -$ K,(x-E)f(E)dL (6.11) 

In Bland's collocation method, the collocation points x, are selected as the zeros 

xrl of the downwash polynomial a N+l' The unitary and logarithmic parts are then 

computed exactly by (5.3) and (5.24), and the continuous part is computed approxi- 

mately by (5.30) using N point Jacobi-Gaussian quadrature. Thus, 

mn = an(Xrl)- $ <iOgxN+l, yn>y + 7 ~lKc(X~l-~~l)yn((i~+l)+~~. C N (6.12) 
m i=l N++ 

The collocation solution is then completed upon solving (6.7) using (6.12) and the 

known downwash. 

For closed wall wind tunnels, Bland [9] observed that (6.12) produced rapid 

convergence with N for smooth downwashes but offered no proof of convergence. In 

[51, we observed similar convergence characteristics for ventilated tunnels and 

established a rigorous proof of convergence of the method based on a three-way 

equivalence between collocation, complex least squares and Galerkin's method. Spe- 

cifically, we showed that solving (6.7) using (6.12) gives 

lim a = 3, Y > 
N-ro nN ny 

(6.13) 

under very general conditions. In section 10 below we present a direct proof of 

convergence with sharper error estimates and discuss the computational problem of 

weak convergence in the presence of flaps. In section 11, we discuss various 

methods of accelerating convergence and show that a 500 fold reduction in error 

can be achieved for flaps with approximately a 20% increase in computing time. 

In section 12 we demonstrate an improved method of computing f$, for unsteady 

flow which reduces quadrature errors in (6.12) by approximately 1000. 
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97. Computation of airloads 

7.1 Basic equations 

Once the Fourier coefficients <$,y > 
ny 

are known, it is an easy matter to 

compute pressures from the expression 

Ap(x) = ; E y ~$,y'~ y,(x). 
n=l 

(7.1) 

Let the lift and moment coefficients be defined as in Ashley [45,p.53] according to 

L = 3 P,$ s c L' M=+2 SEC moo M' (7.2) 

where L denotes lift, M denotes pitching moment about the quarter chord, positive 

in the direction of increasing angle of attack, S denotes planform surface area, 

and where c denotes mean aerodynamic chord. Then for an airfoil the lift and moment 

coefficients and center of pressure reduce 

11 
2 J Ap(x)dx 

2J;; 
C z-- = L 7 

-1 

J 

1 
(x+Ap(x)dx = 

-1 

to 

-+lY ' 
1 Y' 

J;; -- 
2B <@‘Y ' 2 Y' 

i 'M 
XCP = 4 --. C 

L 

(7.3) 

(7.4) 

(7.5) 

These particularly simple formulas involve only the first two pressure Fourier co- 

efficients because of the orthogonality properties of the airfoil polynomials, and 

are among the most accurately computed quantities in the TWODI program. 

The aerodynamic work matrix is useful in the solution of aeroel;%stic problems. 

Let the displacement function be expressed formally as 

h(x,w) = y qmWhm(x) 
m=l 

(7.6) 

where h are displacement basis functions and m %l 
are generalized coordinates in the 

sense of Lagrange's equations. Then the components of the aerodynamic work matrix 
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1 A =- 
mn 2 

(7.7) 

(7.8) 

where $n represents the pressure factor corresponding to the displacement function 

hn. The components of this matrix depend upon the particular deflection basis used 

(which in practice is often selected as the in vacua vibrational eigenfunctions). 2 
We will assume that all displacement functions and their derivatives belong to Lc; 

that is, each hn has a downwash function in L', Expanding both $, and hn in the 

pressure Fourier series, and integrating, (7.8) becomes 

[Amn] = $ [<h,.y,>l [i$m~Yniy]* 
I 

(7.10) 

where * denotes the complex conjugate transpose. 

-- 



_ . - _.__ __-... ..- .-.. -.-- 

-38- 

7.2 Energy properties of the airfoil polynomials 

In our earlier report [51, we compared the results from the TWODI program 

against the exact S&ngen and K:ssner-Schwarz solutions, and made a precise deter- 

mination of the accuracy of !lWODI. Originally, we used the downwash polynomials 

as a basis for the deflections and calculated the integrals for the aerodynamic 

work matrix using numerical integration. We have since observed that if one 

selects the pressure polynomials as the displacement basis, then the aerodynamic 

work matrix in steady free atmosphere flow is upper triangular with zero diagonal 

elements. To see this, choose the displacement basis functions as the pressure 

polynomials 

hn = y,; n = 1,2,... (7.11) 

Then the downwash functions 

w =y’ n n' 
(7.12) 

are readily found to be 

Wl = 0, (7.131) 

w2 = 2a1, (7.132) 

W = 6a1, + 4a2. (7.133) 
3 

W = 12al + iOa2 + 6a3, (7.134) 
4 

W = 20al + l8c2 + 14a3 + 8ah,..., (7.13: ) 
5 

using (5.33) and (5.34). using (5.12), the pressures Ap, corresponding to each of 

the above wn are given by 

AP~=B l+x 8 l-x (O), r (7.141) 

8 l-x 
Ap2 = B J l+x (VI), (7.142) 
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Therefore, by inspection, the lift and pitching moment coefficients and center of 

pressure are given by 

C Ll = 0 ,c =o, 
Ml 

- 
c 4G 

Lp = -pc =o, 
M2 

, x2 = -2500, 

C = 12&F 4J;; - 
L3 

--,c =-- 
B M3 B 

, x3 = -5833, 

C 24& 1oJ;; - = 
L4 

-,c =--,x4= 
B M4 B 

.6667, 

C = 4oJ;; 18& - 
L5 

-,c =----,x5= 
B M5 B 

.7000,... 

(7.151) 

(7.152) 

(7.153) 

(7.154) 

(7.155) 

and the aerodynamic work matrix is 

[AmI = 

0 1 3 6 lo... 

0 0 2 5 9... 

0 0 0 3 7... 

0 0 0 0 4 

0 0 0 0 0 . . . . . . . . . 

(7.16) 

Because the components A 
mn represent the work done on the structure as it de- 

forms in mode m against the pressure due to mode n, it follows that for steady free 

atmosphere flow,zero aerodynamic work is done on the structure as it deforms into 

the pure shape of any of the pressure basis functions. The first column A ml is 

trivially zero because the pressure is zero in steady vertical translation. The 

second column A m2 represents the work done as the structure deforms in its various 

modes against the pressure due to the second mode. In the second pressure mode, 

only the first deflection mode produces work on the structure, and since the second 

displacement mode represents a flat plate at uniform angle of attack, the element 

Al2 corresponds to the lift coefficient derivative CL,. The diagonal element 

A22 represents the work done in pitching the airfoil about the node of mode 2; since 

this node and the center of pressure are both at the quarter chord, no aerodynamic 

work is done. Similar interpretations involving the flexible modes may be made for 

columns 3,4,... 
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7.3 Transformation properties of unsteady airloads 

If the unsteady airloads are known with respect to one set of structural (dis- 

placement) basis functions, then they can be computed with respect to any other set 

of basis functions, provided the transformation from one basis to the other is known. 

This is a direct consequence of the invariance of airloads under change of basis. 

To see this, let {h,} and {hrn] be two bases for the Hilbert space LE of airfoil 

displacements and let {gm,) and {k 1 be their corresponding generalized coordinates. 

Then CD co 

h(x,w) = 1 qm(w)hm(x) = 1 ~(w)fi(x) 
m=l m=l 

(7.17) 

(Throughout this subsection, we will regard all infinite series expressions in a 

formal sense.) Due to the assumed linearity of the problem, the pressure factor de- 

pends linearly upon the displacement and may be expressed as 

JI = Y ‘inam = y q, (7.18) 
m=l m=l 

where $ m and i represent the pressurefactorsdueto hm and h Simi- m 
m' respectively. 

larly, the lift and pitching moment coefficients are given by 

CL=: gmCj&= y 6meLm, 
m=l m=l 

,. A 
$=I qmcq,,= 1 qmChr 

m=l m=l 

(7.19) 

(7.20) 

where C ~ and C h, and C~ and Ch represent the lift and pitching moment coefficients 

due to hm and hm, respectively. The components of the aerodynamic work matrix are 

given by 

11 
A =- 

mn 2 J 
hrntindc, A = + 

-1 J 

1 

;;,ljlnd5 - (7.21) 
-1 

To establish the transformations between airloads in the {h,} basis and the 

{&.,,I basis, we utilize the transformations (assumed known) 

hrn=C;ih ;= 
n=l mnn' m Y Hmhn 

n=l 
(7.22) 

between these bases. Clearly these transformation matrices are the inverses of 

one another 

y Hamtim= 6&, y tie,Hmn= dRn. 
m=l m=l 

(7.23) 
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Substituting (7.22) into (7.18)-(7.20) and equating coefficients of generalized 

coordinates gives the transformations between pressures and section coefficients, 

Cr,= y fi eL 6, = f H mn n' CL 
n=l n=l nm n' 

Ch = y im GM n' CM 
n=l ncnilHmn +nn' 

Combining (7.27) and (7.21), we immediately obtain 

co m 

(7.24) 

(7.25) 

(7.26) 

(7.271) 

(7.272) 

Thus, the components of the aerodynamic work matrix transform according to a COflgJU- 

@We tianh ~0JmaLion: i. e. , 

These transformations may be stated in matrix notation as 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

[AmI = rGml rimI [;I,nlT, rimI = [Hml [Am,1 D&IT (7.32) 

. 
The above results are valid for an arbitrary pair {hm], {hm> of bases for Hh. 

The special case {l&j = {ym] is of particular interest. Since in this case 

4ln = <hm’Y ’ ’ nY (7.33) 
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it follows that 

Cq1~1 = [<hm,yn’yl &}, (7.34) 

Ich} = Phm,yn>y] ftLn}, (7.35) 

{C%l = [<h,,y ' II& 1, 
ny 

(7.36) n 

&,,n] = + [<hman’yl t=Qm,~n>yl*Phm.yn>ylT. (7.37) 

The formulations (7.34)-(7.37) have the advantage that the particular deflection 

basis {h,) can be factored from the solution process. In addition, the correspond- 

ing vector of downwashes may be computed by transforming the deflection basis to 

the downwash polynomials using (5.35) 

(&+ik){y )= (& + ik) [Gklian} = tGkl($ + ik)Ccnl 
.m 

and then differentiating using (5.401) to obtain 

(:+ik){~,j = [G~l[D~+ikSmnl{anl, 

or equivalently, by differentiating first using (5.402) 

(&+ik)I~,~ = [Dm+ikGmnlIynl 

and then transforming to the downwash basis functions to obtain 

($+ik){Gm] = [D~+ikbmnl[G&l(an). 

(7.38) 

(7.39) 

Since all matrices in (7.38) and (7.39) are lower triangular, the resulting matrix 

product 
[im] = [Gk][~k+ikS~l = [Dy + ik& l[Gkl 

mn (7.40) 
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must be lower triangular also. Following (7.38). 

[timI = 2 

Following (7.40), 

[w,,l = 2 

10 0 0 0 0 o... 

210 0 0 0 o... 

2 210 0 0 o... 

2221000 

2 2 2 2 100 

2 2 2 2 2 10 

2222221 

. . . . . . . . . 

ik 0 0 0 0 0 0 . . . 

1 ik 0 0 0 0 0 . . . 

-1 2 ik 0 0 0 0 . . . 

2 -13ik 0 0 0 

-2 3 -1 4 ik 0 0 

3 -2 4 -1 5 ik 0 

-3 4 -2 5 -1 6 ik 

. . . . . . . . . 

One obtains the same result both ways. 

rimI = 2 

- ik 0 0 0 0 0 0 . . . 

1 ik 0 0 0 0 0 . . . 

1 2 ik 0 0 0 0 . . . 

2 13ik 0 0 0 

2 3 14ik0 0 

3 2 4 15ik0 

3 4 2 5 16ik 

. . . . . . . . . 

1 0 0 0 0 0 o... 

2 1 0 0 0 0 o... 

2 2 1 0 0 0 o... 

2221000 

2 2 2 2 100 

2 2 2 2 210 

2222221 

. . . . . . . . . 

ik 0 0 0 0 . . . 

1+2ik ik 0 0 0 . . . 

3+2ik 2+2ik ik 0 0 . . . 

6+2ik 5+2ik 3+2ik ik 0 

10+2ik 9+2ik 7+2ik 4+2ik ik (7.41) 

The matrix [iml represents the linear transformation of downwash from the deflec- 

tion basis {y,) to the downwash basis {an]. 

(7.42) 

It is nonsingular if and only if the frequency is nonzero. 
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Referring back to equation (7.211, we see that the aerodynamic work matrix 

corresponding to this basis is given by 

Gml = $ r<$mfYn’Yl * 

where $ m satisfies Bland's integral equation for the basis function hm = ym, 

($+ik)y, = T im. 

(7.43) 

(7.44) 

In the special case of steady flow in an infinite atmosphere, (5.13) states 

that the Fourier coefficients of pressure in the basis {y,} must equal the Fourier 

coefficients of downwash in the basis {cm]; i.e., 

<$, f Yn>y = ’ (dx d+ik)ymfcn>a mm- =fi 

This gives 

(k=O & rj=m) 

which reduces by inspection to equation (7.16) that previously was derived without 

benefit of the above matrix developments. 

In general the aerodynamic work matrix is nonsymmetric. Physically this is 

because the interaction between the air and the airplane structure is nonconservative. 

Mathematically it cannot be guaranteed that an arbitrary nonsymmetric matrix is con- 

gruent to a triangular matrix. In other words on purely mathematical grounds there 

need not exist a deflection basis in which the aerodynamic work matrix is triangu- 

lar. However it has been shown above in (7.16) and (7.45) that if the pressure poly- 

nomials are used as a deflection basis then the aerodynamic work matrix is in fact 

upper triangular for steady flow in an infinite atmosphere. At the present time, 

the meaning of this result is not fully clear, but it does cast the airfoil polynom- 

ials in a special role. 

A somewhat more abstract algebraic interpretation may be given to the transform- 

ation properties (7.29)-(7.32) of the unsteady airloads. In the case of linear 

aerodynamics, the pressure factor depends linearly upon the airfoil displacements. 

Therefore, by the Riesz representation theorem, the vector space L$ of pressure 

factors is contained in the dual space Li* of airfoil displacements 



-45- 

In this regard the section coefficients are functions which map elements of the 

dual space li* linearly into the complex numbers 

'L h : LZ*+q: 

5.l : L2*+c h 

and are therefore pure contravariant tensors of order 1 relative to Lg [46,p.l?]. .~ 
In the same regard, the aerodynamic work matrix is a function which maps pairs of 

elements from the vector space of displacements Li 
2 and its dual space Lh* bilin- 

early into the complex numbers, i.e., 

and is therefore a mixed tensor of contravariant order 1 and covariant order 1 rela- ~___ 
tive to < [op citl. 

1. 
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28. Renresentation of airfoils with multiple controls ___. 

In section 7 we discussed how unsteady airloads can be calculated for a general 

airfoil displacement in terms of the airloads corresponding to an arbitrary displace- 

ment basis and that certain advantages accrue if the airfoil pressure polynomials 

{y,) are used as the canonical basis for displacements. This section describes how 

displacement functions (h,} possessing discontinuities of the type found with multi- 

ple leading and trailing edge controls can be specified by discrete input data, and 

how the matrix of Fourier coefficients 

can be calculated for such functions. 

8.1 Input data specification of displacements 

Consider an airfoil displacement function of the type illustrated in Figure 1. 

Such a function may represent an upper, lower or mean profile. There may be multi- 

ple leading and trailing edge controls with sealed gaps. Discontinuities in the 

first derivative of the displacement function usually correspond to control deflec- 

tions. Discontinuities in higher derivatives correspond to changes in curvature due 

to design and/or aeroelastic effects such as changes in stiffness properties, etc. 

values of displacement will be specified at Nx distinct points 

xl,..-,xN 
X 

which are called nodes. We shall assume without loss of generality that nodes are 

labeled from left to right along the chord. 

X1<..‘<XN 
X 

The number of nodes may range from a minimum of one to some finite number Nxmax, 

1~~x2xrnax - (8.2) - 

In addition, nodal values of Nh different displacement functions 

hll,.-.,hlNx,-..,hNhN, 

are to be given as input data. Some of the nodes may also be hinges at which dis- 

continuities in derivatives of displacement can occur. Hinge points must lie strictly 

between the leading and trailing edges. 
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-The total number of hinges may range from zero if there are none to at most 

(8.3) 

(8.4) 
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8.2 Subdivision of the chord into line elements 

This subsection describes the procedure for computing interpolation functions 

of airfoil displacements with hinge type discontinuities. The scheme employed 

subdivides the chord into line elemekcs and is illustrated in Figure 4 for two 

hinges. 

xNx(3) (3) 

Figure 4. Subdivision into line elements 

The number of line elements along the chord equals one more than the number 

of hinges. 

Ne = 1 + N,.J (8.5) 

If there is only one element, the element domain lies between the leading and 

trailing edges. 

s-2, = {x : -l<x<ll ife=l&N,=l (8.6) 

If there are more than one element, the first and last domains lie respectively 

between the leading edge and the first hinge, and between the last hinge and the 

trailing edge. 

Cl, = ix : -l<x<xnl) if e = 1 & Ne>l (8.7) 

R, = cx : XQ < x<l} if e = N, & N,>l (8.8) 
:, 
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All remaining domains are bounded by hinges. 

Qe = cx : x 
"e-1 

<x<x+j if l<e<N,. 

For theoretical purposes, these domains are disjoint, 

R el ' 9e2 = $ if eI # e2, 

their closures intersect only at hinges, 

Eel n Ee+, = {xne),l<e<Ne-1, -- 

(8.9) 

i.e., 

and the interior of the union of theirclosuresequals the entire chord between 

the leading and trailing edges. 
N 

n=int(egT ';2,) = lx:-l<x<l1. 

These properties are those required of finite element models [47,Ch.61. Thus, 

the interpolation procedures for the present method of solution in TWODI are con- 

sistent with the finite element method. The advantage of the element by element 

formulation above is that the interpolating functions for each element may be de- 

termined separately and by a uniform procedure. 

The numbers N,(e) of nodes contained in the closure Ee of the various line 

elements are given by 

Nx(e) = N, if e = 1 & N, = 1, (8.10) 

N,(e) = nl if e = 1 & N, > 1, (8.11) 

Nx (e) 

N,(e) 

The particular nodes x,(e) 

= l+n -n e e-l 
if l<eCNe & N e ' 1, 

= l+Nx-ne-I if e = N, & N, > 1. 

which are contained in Ee are given by 

(8.12) 

(8.13) 

x,(e) =x, --x if l<n<N (e) & e = 1, (8.14) 

x,(e) = x~-~+~ if l<n<N (e) & 2<e<N,. (8.15) 
e.- 1 --X -- 

In this manner, the last node of one element is the same as the first node of the 

next element, as is indicated in Figure 4. 

The nodal values of deflections within each element are given in similar fashion. 

hm(e) = h if l<m<N & l<n<N (e) & e = 1, (8.16) mn -- h 

h,,(e) = h m,n-l+n e-l if l<m<N h & l<n<N (e) & 2<e<N e' (8.17) -- --x - - 

I-- 
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The interpolation functions which will be employed to represent displacements 

are airfoil polynomial splines 

N,(e) 
h;(x) = 1 imL(e) y,(X), l<lll<Nh, l<e<N e' (8.18) -- - - 

R=l 

At each element nodal point xn(e)ek, we require that the value of each inter- 

polation function equal the value of displacement prescribed by input data. Thus, 

N,(e) n 
hmn(e) = 1 (8.19) -- 

!L=l 
yQ(xn(e))HmL(e), l<n<N (e), l<m<Nh, l<e<N . 

--X --e 

Since the airfoil polynomials are unisolvent [5,p.421 each coefficient matrix 

possesses an inverse, and since the nodal values, 

are given by (8.16) and (8.17), the coefficients 
,. 
HmQ(e), l<m<N l<ll<N (e), l<e<N -- h, --x --e 

are computable quantities. 
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8.3 Use of jump functions 

Consider the displacement interpolation functions for two adjacent elements: 

N,(e) A 
h;(x) = 1 Hmn. 

!L=l 
(e) y,(x) if x E R , e 

h;+' 
N,(e+l) 

(x) = y 
a1 

$,(e+l)u,(x) if x E R e+l- 

The expressions above are not yet in a form suitable for the solution process of 

TWODI because they are not uniform over the entire chord. This can be accomplished 

by utilizing jump functions and leads to infinite Fourier series whenever a discon- 

tinuity exists in a derivative. 

A representation for hm which is uniformly valid over both line elements 

x s int(SL u Ee+l) 

is given by 

Nx(e) Nx(e,e+l) N,(e) ~mL(e+l)-~me(e) 

(e)yn(x) + 1 1 k! 
k=l Il=k+l 

yp (Xne) <X-xne>k, 

where 

Nx(e,e+l) = max{Nx(e), Nx(e+l)]-1. (8.20) 

The function above equals h:(x) .and all its derivatives whenever x E Re and 
e+l equals hm (x) and all its derivatives whenever x E R,+l. At the hinge x = xm,, 

the function ia continuous in accordance with the sealed gap conditiun, and will 

possess jumps in derivatives exactly equal to jumps in the derivatives from hz to 

h;+? 

Fourier series expansions have been computed for the jump fJlnctions 

k <x-a> = <<x-a> ,y k n'y Y,(X) (8.21) 
n=l 

3s JiLcussed above in section 5. In order to utilize these expansions, we extend 

the uniformization above to all chord elements by starting with the leading edge 
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element and adding jump contributions from all hinges downstream. It is easy to 

see that the result is 

Nx(l) 
hm(x) = 1 

n=l 
i&l) Y,(X) 

N6 Nx(e,e+l) N,(e) imQ(e+l)-HmQ(e) 
+c c 1 

(k) 
m 

e=l k=l Q=k+l k! YQ (xme) <x-x >k. 
e 

(8.22) 

Equation (8.22) is uniformly valid for all points x E R between the leading and 

trailing edges. 
(k) Thederivatives YQ (xne) at the hinges may be computed with the aid of equation 

(5.40) according to 

Q-l I 
YQ = 1 

nI=l nl' 

Q-l Q-2 II 
YQ 

Q-l Q-2 Q-k 
(k) = 

YQ 
1 1 --- 1 Dinl Diln2 aa* Dlk-lnk 'nk, k>3. 

nl=l n2=1 n =l - 
k 

Upon combining (8.21)-(8.231, there results 

h,(x) = T ", Y,(x) 
n=l 

,. 
where H is as introduced in (7.33) and is given by 

fi =; 
"s N,(e,e+l) N,(e) imQ(e+l)-fimQ(e) 

>k,Y ' mnmn cl)+ 1 1 c 
e=l k=l Q=k+l k! YLk) (Xne)<FX 

"e nY 

(8.231) 

(8. 232) 

(8.233) 

(8.24) 

(8.25) 
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59.. Instructions.for the use of TWODI 

This section describes the preparation of input data for use of the current 

TWODIprogram (~~0~1-111). It is assumed that the user knows the physical meaning 

of all terms used in this report and the procedures for accessing TWODI at his 

computer facility. Also, we reiterate that the solution is based upon the mathe- 

matical assumptions of inviscid subsonic linearized potential flow about a thin 

airfoil located midway between two parallel wind tunnel walls. 

9.1 Summary of capabilities ~- 
TWODI will operate in either TIMESHARE (remote interactive terminals) or BATCH 

(noninteractive card jobs). Input and output are fully compatible between TIMESHARE 

and BATCH. In addition TWODI is coded in ANSI FORTRAN to achieve maximum machine 

independence. 

TWODI will predict unsteady airloads consisting of any combination of the fol- 

lowing output quantities: 

(1) Fourier coefficients of pressure, 

(2) Values of pressure, 

(3) Section coefficients and center of pressure, and 

(4) Aerodynamic work matrix. 

The primary parameters determining the standard solution output are: 

(1) Mach number, 

(2) Reduced frequency, 

(3) Height to chord ratio, 

(4) Wall ventilation coefficient, and 

(5) Airfoil profiles (i.e., displacement mode shapes). 

The solution process in TWODI handles one case at a time, defined by a single com- 

bination of Mach number, reduced frequency, height to chord ratio and ventilation 

coefficient. Since the downwash corresponding to any given mode shape can be factor- 

ed out of the solution equations, multiple downwashes are handled simultaneously 

within a given case. 

Multiple cases may be handled under a single problem which consists of all 

combinations of various numbers of Mach number, reduced frequency, height to 
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chord ratio and ventilation coefficient. Within a given problem, selection of 

output quantities remains fixed. 

Provision is also made to enter several different problems. This may be 

done by altering a previously defined problem or by entering a completely new 

problem. All data, including the selection of output quantities, may be changed 

from one problem to another, with the exception that all problems in a given run 

must be done in TIMESHARE only, or in BATCH only. 

It is possible to solve the same problem using more than one method. This 

provision is preparatory to allowing TWODI to select automatically the optimum 

method of solution and thus to handle its own accuracy control at some time in 

the future. In addition certain special purpose and checkout calculations are 

available. 

All input data are automatically checked for correctness. If the run is a 

BATCH job, unacceptable data are selectively deleted with an explanatory comment 

and execution continues to the extent that it can. If the run is an interactive 

TIMESHARE job the user will be prompted to correct unacceptable data. 
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9.2 Interactive input format for TIMESHARE 

Queries and messages by TWODI are denoted with Q, responses by the user are 

denoted with A. Consecutive data entries must be separated by a comma or by one or 

more blanks. All data are assigned initial values by TWODI using subroutine INITLZ. 

These initial values are indicated within brackets [ I below and are precisely de- 

fined in the glossary in section 9.4. After one or more problems have been entered, 

the most recently defined values are those of the most recently entered problem. In 

general, for default to the most recently defined values, type D followed by an im- 

mediate carriage return. 

Data module 0. Introduction 

Q: This is TWODI-III 

FOR DEFAULT TO INITIAL OR MOST RECENTLY DEFINED VALUES 

TYPE D FOLLOWED BY CARRIAGE RETURN IF IN TI'NEXHARE AND ENTER 

AN OTHERWISE BLANK CARD WITH A D IN COLUMN 1 IF IN BATCH. 

IF IN TIMESHARE TYPE HALT TO STOP. 

Data module I. Run parameters 

Q: ARE YOU IN TIMESHARE OR BATCH? 

A: TIMESHARE [TIMESHARE] 

Q: ENTER NUNBER OF LINES PER PAGE 

A: Type integer number of lines per page or D followed by carriage 

return for default. [=I 

Data module II. Output parameters 

Q: 

A: 

Q: 

A: 

Q: 

A. 

ENTER TITLE 

Type descriptive alphanumeric title of 1 to 72 characters or D followed 

by carriage return for default. [SAMPLE PROBLEM] 

ENTER DESIRED OUTPUT COMBINATION OF FOURIER, SECTION AND WORK 

Type desired combination or D followed by carriage return for 

default. [FOURIER, sEcTIoN 

ENTER LIST OF PRESSURE POINTS 

Use standard list format (refer to glossary in section 9.4). TypeOif 

none or D followed by carriage return for default. [lo/-.8,11 
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Data module III. Flow parameters 

Q: 

A: 

Q: 

A: 

Q: 

A: 

Q: 

A: 

Q: 

A: 

ENTER LIST OF MACH NUMBERS 

Use standard list format or type D followed by carriage return for 

default. [l,Ol 

ENTER LIST OF FREQUENCIES 

Use standard list format or type D followed by carriage return for 

default. [2,0,11 

ENTER LIST OF HEIGHT TO CHORD RATIOS 

Use standard list format or type D followed by carriage return for 

default. [l, INFINITY] 

ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS 

Use standard list format or type D followed by carriage return for 

default. [l, INFINITY] 

ENTER LIST OF VISCOUS EFFECT VENTILATION COEFFICIENTS 

Use standard list format or type D followed by carriage return for 

default. r1,01 

Data module IV. Modal parameters 

Q: ENTER LIST OF NODES 

A: Use standard list format or type D followed by carriage return for 

default. [3/-1,ll 

Q: ENTER NUMBER OF MODE SHAPES 

A: Type integer number of mode shapes or D followed by carriage return for 

default. t31 

A: ENTER MODE SHAPE 1 

A: Type values of mode shape 1 at modal collcoation points or D followed 

by carriage return for default. [l/J;;, l/J;; , l/Al 

RepeatthelastQ&A for the remainingmode shapes. [-1/&,1/J;;, 3/J;;], Cl/&, -l/J;;, 5/J;; 

Q: ENTER LIST OF NODE NUMBERS OF HIWGES 

A: Use standard list format if downwash discontinuities are present. 

Type 0 if there are none or D followed by carriage return for default. 101 

Data module V. Method parameters 

Q: ENTER NUMBER OF METHODS OF SOLUTION 

A: Type integer number of methods of solution or type D followed by carriage 

return for default. r11 
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Q: ENTER SOLUTION PARAMETERS FOR METHOD 1 

A: Type the parameters for the first method of solution or type 

D followed by carriage return for default. Refer to the glossary for 

precise definitions. E3,5,0,0,01 

Repeat the last Q&A for the remaining methods of solution. 

Data module IV. Data editing 

Q: DO YOU WANT THE INPUT DATA LISTED? 

A: Type YES or NO. 

Q: DO YOU WANT TO MAKE CHANGES? 

A: Type YES or NO. 

Note: An answer of YES will result in the following sequence: 

Q: DO YOU WANT TO LINE EDIT? 

A: Type YES or NO. 

Note: An answer of NO will result in data modules II-VI being repeated. 

For each data item which does not need to be corrected, simply 

type D followed by carriage return. An answer of YES will result 

in the following sequence: 

Q: NOW OPEN FOR LINE EDITING. WHEN DONE TYPE END. 

A: Enter keyword for data item you wish to change and you will 

be prompted for the relevant input. The keywords are as 

follows: 

TITLE 

OUTPUT 

PRESSURE 

MACH 

FREQUENCY 

HEIGHT 

MASS 

v1sc0us 

NODE 

MODE 

HINGE 

METHOD 

END 

The first three letters of any keyword are sufficient. This 

process may be repeated as often as desired. To terminate 

editing enter the keyword END. 
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Data module VII. Multiple problems 

Q: Do YOU WANT TO ENTER ANOTHER PROBLEM? 

A: Type YES or NO. 

Note : An answer of NO will result in the current list of problems being run. 

An answer of YES will result in the query 

Q: IF YOU WANT TO MODIFY AN OLD PROBLEM, ENTER ITS NUMBER 

OTHERWISE TYPE D FOLLOWED BY CARRIAGE RETURN 

A: Type N to alter problem N. Type D followed by carriage return to 

begin a completely new problem. 

Once the last Q is answered with NO the list of problems will be run. Upon 

completion, prompting will continue as follows. 

Q: DO YOU WANT TO ENTER ANOTHER PROBLEM? 

A: Type YES or NO 

Note : An answer of NO will stop the program. An answer of YES will result 

in the query 

Q: IF YOU WANT TO RETAIN OR MODIFY PROBLEMS FROM THE OLD PROBLEM LIST 

ENTER PROBLEM N OF THE OLD LIST AS PROBLEM M OF THE NEW LIST WHERE 

M IS LESS THAN OR EQUAL TO N. OTHERWISE PROBLEM N WILL BE DESTROYED. 

TO MODIFY AN OLD PROBLEM, ENTER ITS NUMBER 

OTHERWISE TYPE D FOLLOWED BY CARRIAGE RETURN 

A: Type N to alter or retain problem N as problem 1 of the new problem 

list. Type D followed by carriage return to begin a completely new 

problem list. up to three problems may be defined. 

The APPENDIX presents a sample interactive input/output. 
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9.3 Card input format for BATCH 

Data are read in free format. Entries on a given card may be arbitrarily 

spaced so long as correct order is maintained. Consecutive entries on a card 

must be separated by a comma or one or more blanks. Otherwise blank cards with 

D in column 1 imply default to the most recently assigned values. 

Data module I. Run parameters 

Card 1: BATCH 

Card 2: Number of lines per page or otherwise blank card with D in 

column 1 for default value of 66. 

Data module II. Output parameters 

Card 1: Descriptive alphanumeric title in columns l-72. 

Card 2: Desired combination of the words FOURIER, SECTION and WORK 

separated by commas or blanks. Use an otherwise blank card 

with D in column 1 for default. 

Card(s) 3: Pressure points in standard list format (see glossary in 

section 9.4). Enter 0 if no pressure values are desired. Use 

an otherwise blank card with D in column 1 for default. 

Data module III. Flow parameters 

Card(s) 1: Mach numbers in standard list format. Use otherwise blank 

card with D in column 1 for default. 

Card(s) 2: Reduced frequencies in standard list format. Use otherwise 

blank card with D in column lfor default. 

Card(s) 3: Height to chord ratios in standard list format. Use otherwise 

blank card with D in column 1 for default. 

Card(s) 4: mass effect ventilation coefficients in standard list format. 

Use otherwise blank card with D in column 1 for default. 

Card(s) 5: Viscous effect ventilation coefficients in standard list format. 

Use otherwise blank card with D in column 1 for default. 

Data module IV. Modal parameters 

Card(s) 1: Nodes in standard list format. Use otherwise blank card 

with D in column 1 for default. 

Card(s) 2: Number of modes, or otherwise blank card with D in column 1 for 

default. 
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Card(s) 3: Values of mode shape 1 at nodes , or otherwise blank card with 

D in column 1 for default. 

Repeat this card(s) for the remaining mode shapes. 

card(s) 4: Node numbers of hinges if such discontinuities are present. 

Enter 0 if none are present, or use an otherwise blank card with 

D in column 1 for default. 

Data module V. Method parameters 

Card 1: Number of different methods of solution, or otherwise blank 

card with D in column 1 for default. 

Card 2: Solution parameters for first method of solution, or otherwise 

blank card with D in column 1 for default. See glossary for precise 

definitions of names and parameters. 

Repeat Card 2 for the remaining methods of solution. 

Data module VI. Data editing 

Data editing is not currently permitted with BATCH input. 

Data module VII. Multiple problems 

Card 1: YES or NO beginning in column 1. If YES then repeat data modules 

II-VII. If NO processing will terminate. 
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9.4 Glossary of input terminology 

This subsection provides in alphabetical order definitions of input parameters 

needed to run TWODI. All data are automatically tested upon input and unacceptable 

values are deleted with an explanatory message. 

BATCH. Indicates noninteractive jobs with punched card input. 

FOURIER. Entering the word FOURIER causes the pressure Fourier coefficients to be 

printed upon output. Initial default condition is affirmative. 

LIST FORMAT. There are two standard formats for entering lists of numbers, one 

for arbitrarily spaced data and another for equally spaced real data. To enter N 

arbitrarily spaced real or integer data with values Vl,...,VN, type 

N, Vl,..-,VN 

Such an arbitrarily spaced list may contain one (and at most one) infinite value 

by entering INFINITY. To enter N equally spaced real numbers from A to B, type 

N/A,B 

To enter an empty list, type 0. 

LIST OF FREQUENCeES. From 1 to 10 finite real numbers representing reduced fre- 

quency based on semichord. May not be an empty list. Initial default condition 

is two frequencies with values 0 and 1. 

LIST OF HEIGHT TO CHORD RATIOS. From 1 to 5 positive numbers representing height 

to chord ratio. May not be an empty list. To specify free air conditions, type 

INFINITY. Initial default condition is one value of INFINITY. 

LIST OF MACH NUMBERS. From 1 to 10 values of subsonic Mach number, each of which 

must be non-negative and less than one. May not be an empty list. Initial default 

condition is one Mach number with value 0. 

LIST OF NODES. From 1 to 20 distinct points at which mode shapes are to be collo- 

cated. May not be an empty list. Initial default condition is 3 nodes with values 

-1, 0 and 1. 

LIST OF NODE NUMBERS OF HINGES. From 0 to 3 integers locating possible flap hinges 

at the corresponding nodes. May be an empty list. Initial default condition is 

that there are no hinges. 

LIST OF PRESSURE POINTS. From 0 to 100 points along the chord where pressures are 

to be printed upon output. Each value must be greater than -1 (i.e., aft of lead- 

ing edge) and less than or equal to +l(i.e., not aft of trailing edge). Should 

not coincide with any hinge locations: if so, such pressure points will be deleted 

and the number of pressure points reduced accordingly. May be an empty list. Ini- 

tail default condition is 10 points equally spaced from -.8 to 1. 

- - 
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LIST OF MASS EFFECT VENTILATION COEFFICIENTS. From 1 to 5 values of mass effect 

(slotted wall) ventilation coefficients. Enter INFINITY for closed walls. For 

open jet enter 0 for both mass effect and viscous effect (see below) ventilation 

coefficients. Initial defaultconditionis one value of INFINITY. 

LIST OF VISCOUS EFFECT VENTILATIONCOEFFICIENTS.. From 1 to 5 values of viscous 

effect (porous wall) ventilationcoefficients. Enter INFINITY for closed walls. 

For open jet enter 0 for both mass effect (above) and viscous effect ventilation 

coefficients. Initial default condition is one value of 0. 

NUMBER OF LINES PER PAGE. Indicates number of lines per page of printed output. 

Not presently utilized. Initial default value is 66 in both BATCH and TIMESHARE. 

NUMBER OF METHODS OF SOLUTION. Integer from 1 to 10 which controls the number of 

different methods by which each case is solved. Presently used for convergence 

and extrapolation control. Initial default value is 1. 

NUMBER OF MODE SHARES. Integer from 1 to 5 which controls the number of different 

mode shapes for which airloads are calculated. Initial default value is 3. 

SECTION. Entering the word SECTION causes section coefficients CL and CM for lift 

and moment and chordwise center of pressure xcP to be printed upon output. Initial 

default condition is affirmative. 

SOLUTION PARAMETERS.* Three integers 11, 12 and 13 followed by two real numbers 

P.l and R2. Used to control the method of solution and to perform special purpose 

and check calculations. Will be phased out in the future and replaced by automatic 

accuracy control. The five-tuple (11, 12, 13, Rl, R2) produces the following (a 

dot . indicates parameters not presently used, so enter 0): 

(1,2,1,*,-j Checks the Legendre-Gaussian quadrature tables. 

(1,2,2,*,.) Checks the logarithmic-Gaussian quadrature tables. 

(1,2,3,-,-) Checks the inverse square root Gaussian quadrature tables. 

(1,2,4, *, -) Checks the Laguerre-Gaussian quadrature tables. 

(1,3,.,*,*) Checks the eigensolution of (3.114). 

(1,4,.,*,-) Checks the infinite series summation (3.111)- 

(1,5,*,.,.) Checks the calculation of J$ in (3.10). 

(1,6,*,.,.) Checks the calculation of FI in (12.26). 

(1,7,*,*,*) Checks the calculation of F2 in (12.33). 

*Note added in proof. Since the writing of this report, TWODI has been modified 
for automatic extrapolation as described in section 11 and the Possio free air 
kernel is computed as described in section 12. This Glossary, the Addendum 
immediately following the Conclusions in section 15 and the Appendix reflect these 
changes. 



(1,9,-,*,-I 

(l,lO,-,a,-) 

(2,1,- rRl,=?) 

(2,2,*,-,-) 
(2,4,-,*,-l 

(3,12,13,Rl,.) 
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Checks the calculation of airfoil polynomials in (5.5). 

Checks the calculation of the collocation matrix (6.8). 

Special purpose. Calculates the Kiissner-Schwarz solution for 

flaps with hinge at Rl and reduced frequency R2. -1scLIl. 

Special purpose. Quadrature evaluation of Possio kernel. 

Special purpose. Quadrature of xlogx using Legendre-Gaussian 

quadrature. 

Standard solution. Richardson extrapolation of order 13 

based on Bland's collocation method with a period of 12 

basis elements using internal error tolerances of Rl. If 

Rl=O, Rl is set to 10s6. Final solution error is approxi- 

mately 1ORl. Reduces to Bland's collocation method with 12 

basis elements when I3=0. 1111<24. This is the only combi- 

nation of solution parameters needed to compute airloads. 

Use of solution parameters with 11#3 requires expert interpretation and is not 

recommended for production usage. Initial default value of solution parameters 

is (3,5,0,0,0). 

TIMESHARE. Indicates remote terminal jobs in which TWODI and the user communicate 

interactively. Initial default value is affirmative. 

WORK. Entering the word WORK causes the aerodynamic work matrix [Amn] to be 

printed upon output. Not presently implemented. Initial default condition is 

negative. 
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510. Conversence characteri.stics of TWODI i -<-: 7: _ - 

In our previous report 151 an extensive examination of the convergence 

of Bland's collocation method was made; both analytically and computationally. 

Our principal theoretical result was that collocation and Galerkin's method were 

numerically equivalent, so that convergence was analyzed in terms of Galerkin's 

method. On the assumption that the quadrature errors in the evaluation of the 

Galerkin matrix could be neglected, it was concluded that Bland's method was con- 

vergent. This theoretical result was validated by exhibiting the rapid numerical 

convergence of TWODI-I for a variety of steady and unsteady flow problems with 

smooth downwashes. 

In the present section these results are extended in several directions. 

First our convergence result is strengthened by showing that one need not make 

the assumption of negligibility of quadrature errors in the Galerkin matrix and 

we present a direct proof of the convergence of collocation. This enables us to 

obtain improved error estimates along with strenthening the theoretical basis of 

collocation methods in aerodynamic calculations. Second, the numerical conver- 

gence of TWODI is demonstrated for problems with flaps. An important result in 

this case is the verification of the predicted slow rate of convergence, in contrast 

to the rapid rate achieved for smooth downwashes. This observation required us to 

make a detailed study of a number of convergence accelerating techniques; a topic 

which is taken up in detail in the following section. 

10.1 L2 convergence of collocation. 

Since we wish our analysis to cover other equations than those with Bland's 

kernel we begin by making several assumptions concerning the kernel K(x)=K(x)-l/x. 

These are: 

(A-l) K(x-<) is Lebesgue-Stieltjes square integrable with respect to the product 

measure 1s Jz ;i.e., 

dcdx<m. 

(A-2) K(x-c) is mean square continuous; i.e., 

g lii(x-E+h)-K(x-E) )* dc = 0. 

(10.1) 

(10.2) 
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For the next assumption we need the following definition. 

Definition. Let feL$ and let Q,(f) denote the sum given by the quadrature 

rule (5.301). We say that f is quadrature convergent for {Q,, if Q,(f) is 
defined, ~21, and if 

1 
1.i.m QN(f) = 
NM IJ- 

2 f(x)dx. 
-1 

(A-3) For each fixed 5, I;(S(X)~~ = ]ik(x-El I2 is quadrature convergent. 

Since for Bland's kernel K(x) = KL(x) + Kc(x) where Kc(x) is continuous 

it follows by standardtheorems [443,[483 that Kc(x) satisfies (A-l)-(A-3). For 

KL(x)lsimilar properties may be shown by direct, though lengthy computation 

r491- The proof, particularly of (A-3),relies on the fact that QN(f) may be 

viewed as a Riemann sum [49],[50] andthatappropriately chosen Riemann sums con- 

verge to the integral of (logl~l)~. 

Our next step is to recast the 

form. 

Definition. Let feLi and let {xkjf: be the zeros of eN+l. Then 

N 

h,(f) = c 
k=l 

collocation method in a suitable abstract 

Ilk(X)f (x,) I (10.3) 

is the unique polynomial which interpolates to f(x) at ixk}y- Here {E,(x) 1; 

are the fundamental polynomials of Lagrange interpolation. 

Using (10.3) the sequence of operators {KN) is defined by 

Let N 
$(5) = 1 a,v,(O 

k=l 

be the collocation approximation to@ usingtheN basis elements {u,}fl. Then 

a little algebra shows that 6, satisfies the equation 

HJIN NN +KJI = LN(W) = WN. 

(10.4) 

(10.5) 

'For technical reasons we shall consider log[x-El = 0 if x = 5. 
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(Note that (10.5) is analogous to the equation satisfied by $E , where $ G 
N 

is the corresponding Galerkin approximation to a.1 The convergence of $, to 

JI is based on the following lemmas. 

Lemma 10.1 Assume that {KN] are bounded and that 

lim 11 K-KNII = 0. (10.6) 
N-r0 

-1 
Then there exists an No such thatforallN>No, (H+K ] N exists, is bounded and 

the norms T N = ll(H+KN)-l 11 are uniformly bounded. From this it follows that 

for all N>N o' 'N exists and 

(10.7) 

Proof. The existence and boundedness of (H+KN]-l follow along standard lines 

[511. To obtain (10.7) observe that 

J, - $', =$-(H+KN]-lWN = (H+K&l [ (H+K~]$-w~I 

-1. 
= (H+K~) [H$+L~(K$)-L~(w) 1 

= C-I+%) -l K-W-LN (Ha) 1 - (10.8) 

Taking norms on both sides of (10.8) gives (10.7) 0 

Lemma 10.2. Let fsLi and assume that lfl2 is quadrature convergent for {Q,]. 

Then 

lim II f-LN(f) 11 cL = 0. (10.9) 
ET-W 

Proof. In [44] it was shown that the lemma holds when f is assumed to Riemann 

Stieltjes square integrable, in particular when f is continuous. However, a 

careful examination of the proof presented there shows it is sufficient to re- 

quire that lfl2 be quadrature convergent0 

Using Lemmas 10.1 and 10.2 it follows that $,+I) provided that IIK-~(I + 0, 

K satisfies (A-1) - (A-3) and Iwl* is quadrature convergent for {Q,]. 

To see this, observethatit follows from the above discussion that /H$/~ is 

quadrature convergent since HJI = K$ - w and IK$/* is quadrature convergent (in 

fact continuous from (A-2)) and 1~12 is quadrature convergent by assumption. 

Thus by Lemma 10.2 

lim 11 H$-LN(H$] I[ = 0, (10.10) 
N-xo 
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and so (10.7) shows that $ -f$ in the norm of L2. N Y 
Using this we arrive at 

our main convergence theorem. 

Theorem 10.1. Let K(x-E) satisfy (A-I)-(A-3). Assume that w is quadra- 

ture convergent, then 

lim II ?P$, II y = 0. 
N- 

Proof. From the preceeding discussion it suffices to show that lKB> are 

bounded and that 

lim 11 K-KBII = 0. 
N- 

The boundedness of KB is established first. 

From (10.3) it is seen that N 

(KN$) (X) = >: ikbd (K$) (xk). 
k=l 

From Eq. 14.2.4 in [44 I we get that2 

where {xk = 
Tr (l+xk) 

kc+ 
1 are the weights in the quadrature rule QB. Thus 

LN(Kt') 12dB(x) = : hklK$(xk)12. 
k-1 

But 

so that 

IIK,alt dI XkSk) II $112 I Y 
- .- 

21n what follows we use da(S) = / 5 dg and dg(x) = J'E dx. 
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where 

This gives 

since B k < m, and so %I is bounded. 

To prove the uniform convergence of KN to K observe that 

J 

1 

(KQ-K~$) = HN(x,S)$(S)da(S), 
-1 

where 
N 

HN(X’5) = Kh-S) - 1 .ck(X)K(Xk-<). 
k=l 

Thus 

Let Pi = 2(x-E). Then 

I~NkE) = llE(X) - LNoy (x). 

From Lemma 10.2 it follows that 

for each fixed E,. 

Prom the proof of Lemma 10.2 found in [441 we get 

J 

1 1 

lim sup( I* 
N- 

-L (P ) /2dB(xHL 4 
5 N 5 J 

(it(x-El (2dB(xI. 
-, -1 

Since 

(10.11) 

11 

J J 
I~(x-s) 12db(x)da(c) < m 

-1 -1 

I- - 
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it follows from (10.11) that there exists a function p(c) such that 

and 

so that by the dominated convergence theorem 

Thus 

1 

lim IIK-K,ll 2z Al 
NW f -1 i 

1 

IHN(XnE) 12dB(x)da(c) = o 
-1 

and the theorem is proved0 

We now make several observations concerning the convergence theorem. First 

we note that it has been shown that @ N converges to J, in mean square and not 

pointwise, although numerically pointwise convergence is indicated [ 51. HOW- 

ever it is easily shown that the generalized Fourier coefficients {an} converge 

to the true Pourier coefficients of $. In addition integrated aerodynamic forces 

such as lift and pitching moment also converge to their true values. This was 

established in [ 51 and follows easily using the fact that such quantities are 

represented in terms20f inner products of the pressure factor J, and an appro- 

priate function in L . 
Y 
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Second we observe that the rate of convergence is proportional to 

11 H"-LN (Hd') 11, - If the downwash is smooth, then in general HJI will be smooth 

and we expect LN(H$) to converge rapidly to HI/J. This was observed in [ 51. 

However if w is not smooth then HJ, will be poorly behaved and thus slow con- 

vergence of LN(H$) to H$ is anticipated. In fact for the particular case of 

steady flow in free air,k=O so that 

II w,ll+, 5 II w-LN(w) II a- (10.12) 

Although we have not obtained exact estimates of I~w-L~(w) l/u we expect that 

asymptotically it should behave no worse than 0(1/n). The slowest conver- 

gence rate should occur for a downwash w(x) corresponding to a simple leading 

or trailing edge flap. Numerical results presented in Tables 3-4 indicate a 

somewhat better rate of 0(1/N). For k#o the same rate is expected since 

and by (A-l) K$ is continuous. Thus the dominant error term is -c~IIw-L~(w)II. 

Again the results exhibited in Tables 5-6 indicate an 0(1/N) rate of convergence. 

In general for 24 basis elements, l%-2% error might be anticipated using 

TWODI for flaps. This would be an unacceptably large error for high precision 

engineering work. Substantial increase in accuracy thus appears to require one 

of two strategies; an increase in the number of basis elements and/or the 

utilization of alternate solution methods. 

Since present engineering technology allows pressure measurements to be 

made within an error of O(10m3) this is the maximum error that we would like to 

have. From Table 3 we see that an errorof0(10U3) foramidchord flap would re- 

quire several hundred basis elements. Such an increase in the number of basis 

elements is out of the question. The second option is pursued in the following 

section where it is shown that an error of O(10m4) can be achieved for a mid- 

chord flap using 16 basis elements, and an error of O(10 -3) is obtained for a 

three-quarter chord flap using 12 basis elements. 
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Table 3. Frincipal error term in norm for a midchord flap (M=O,k=O,n=m) 

NP ll9,,ll y 
1 1.77245 
2 1.50774 
3 1.67441 
4 1.54963 
5 1.64833 
6 1.56602 
7 1.63626 
8 1.57475 
9 1.62929 

10 1.58017 
11 1.62477 
12 1.58386 
13 1.62159 
14 1.58654 
15 1.61923 
16 1.58857 
17 1.61471 
18 1.59817 
19 1.61597 
20 1.59145 

% error 1% errorlxNP 

-10.545 10.5 
+5.964 11.2 
-4.430 13.3 
+3.352 13.4 
-2.843 14.2 
+2.330 14.0 
-2.051 14.4 
+1.785 14.3 
-1.617 14.5 
+3.447 14.5 
-1.335 14.7 
+1.217 14.6 
-1.136 14.8 
+1.049 14.7 
-0.989 14.8 
+Q. 923 14.8 
-0.876 14.9 
+0.823 14.8 
-0.786 14.9 
+0.743 14.9 

II $11 y exact = 1'; + 1 = 1.60337 

Principal error term in lift for a midchord flap (M=O,k=O,n=-) Table 4. -__ 

NP CL % error 1% errorlxNP 

1 6.28319 +22.203 22.2 
2 4.54656 -11.573 23.1 
3 5.60128 +9.057 27.2 
4 4.80272 -6.591 26.4 
5 5.43401 +5.687 28.4 
6 4.90481 -4.605 27.6 
7 5.35469 +4.145 29.2 
8 4.95964 -3.539 28.3 
9 5.30922 +3.260 29.3 

10 4.99386 -2.873 28.7 
11 5.27974 +2.687 29.6 
12 5.01725 -2.418 29.0 
13 5.25908 +2.285 29.1 
14 5.03424 -2.088 29.8 
15 5.24379 +1.988 29.4 
16 5.04715 -1.837 29.4 
17 5.23202 +1.759 29.9 
18 5.05729 -1.640 29.5 
19 5.22269 +1.577 30.0 
20 5.06546 -1.481 ,29.6 

CLexact = 2+T 
.~ - 
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Table 5. CL for an oscillating flap hinged at the 50% chord (M=O, k=.l,q=m) 
6 .__-__ ~ -- 

source real 

NP=l 5.24189 
NP=2 3.83875 
Np=3 4.71938 
NP=4 4.05062 
NP=5 4.57548 
NP=6 4.13538 
NP=7 4.50954 
NP=8 4.18095 
NP=9 4.47172 
NP=lO 4.20940 
NP=ll 4.44720 
NP=12 4.22884 
NP=13 4.43001 
NP=14 4.24298 
NP=15 4.41730 
NP=16 4.25371 
NP=17 4.40751 
NPA18 4.26214 
NP=19 4.39974 
NP=20 4.26894 

imag 

-0.50914 5.26656 -5.55 +20.9665 
-0.39049 3.85856 -5.81 -11.3735 
-0.46530 4.74226 -5.63 + 8.9240 
-0.40762 4.07108 -5.75 - 6.4922 
-0.45292 4.59785 -5.65 + 5.6071 
-0.41479 4.15613 -5.73 - 4.5387 
-0.44719 4.53166 -5.66 + 4.0868 
-0.41868 4.20186 -5.72 - 3.4883 
-0.44390 4.49370 -5.67 + 3.2149 
-0.42113 4.23041 -5.71 - 2.8326 
-0.44177 4.46909 -5.67 + 2.6496 
-0.42281 4.24993 -5.71 - 2.3842 
-0.44027 4.45184 -5.68 + 2.2534 
-0.42403 4.26411 -5.71 - 2.0585 
-0.43916 4.43907 -5.68 + 1.9601 
-0.42495 4.27489 -5.71 - 1.8109 
-0.43831 4.42925 -5.68 + 1.7345 
-0.42568 4.28335 -5.70 - 1.6166 
-0.43764 4.42145 -5.68 + 1.5554 
-0.42627 4.29017 -5.70 - 1.4600 

magn phase % error(magn) 

Table 6. CL 
6 

for an oscillating flap hinged at the 75% chord (M=O,k=.l,q=m) 

source real imag magn phase % errortmagn) 

NP=l 5.20343 -0.76932 5.25999 -8.41 +62.2622 
NP=2 3.80393 -0.57961 3.84783 -8.66 +18.6994 
NP=3 2.86126 -0.44037 2.89495 -8.75 -10.6954 
NP=4 4.01530 -0.60740 4.06098 -8.60 +25.2747 
NP=5 3.45638 -0.52720 3.49635 -8.67 + 7.8568 
NP=6 3.01247 -0.46186 3.04767 -8.72 - 5.9843 
NP=7 3.70555 -0.56291 3.74806 -8.64 +15.6216 
NP=8 3.36432 -0.51342 3.40298 -8.68 + 4.9765 
NP=9 3.07119 -0.47035 3.10700 -8.71 - 4.1540 
NP=lO 3.56680 -0.54280 3.60786 -8.65 +11.2967 
NP=ll 3.32122 -0.50707 3.35971 -8.68 + 3.6417 
NP=12 3.10241 -0.47489 3.13854 -8.70 - 3.1811 
NP=13 3.48818 -0.53135 3.52842 -8.66 + 8.8461 
NP=14 3.29653 -0.50341 3.33475 -8.68 + 2.8717 
NP=15 3.12177 -0.47771 3.15811 -8.70 - 2.5774 
NP=16 3.43758 -0.52397 3.47729 -8.67 f 7.2688 
NP=17 3.28046 -0.50103 3.31850 -8.68 f 2.3704 
NP=18 3.13496 -0.47963 3.17144 -8.70 - 2.1662 
NP=19 3.40229 -0.51882 3.44162 -8.67 + 6.1684 
NP=20 3.26916 -0.49936 3.30708 -8.68 + 2.0181 



-73- 

10.2 Stability and integration error. 

The error estimate given by (10.7) is a theoretical one based on the assump- 

tion that all arithmetic is performed exactly. In general there will be other 

sources of error, particularly roundoff and errors in the evaluation of the col- 

location matrix. To see the effect of these assume that GN is the computed value 

Of $N- Then letting a$,=$,-$, it is seen that 

$-i,= (6-Q,) +6$~. 

Taking norms on both sides of (10.13) shows that 

Since ([$-QNllyis estimated in (10.7) 

is given by 

9, = 

we concentrate on evaluating IIS$ll, 

!ay 
n=l n n 

(10.14) 

Now 'b, 

(10.15) 

where Ianliz, solve the collocation equations (6.7), Let Ian1z=l be the numeri- 

ca1l.y computed values of ian]fE1. Then 

This gives 

ti$ = n 7 n i .rSa,~, 
n=l 

(an-an) yn= 
n=l 

Using the orthonormality of iu,l:=, we get that 

(10.16) 

Letting 6a = IBanl:=l, ll~~,ll~= [(6a(12, where [l&all2 is the usual Euclidean length 

of a complex N-vector. 

If CN denotes the collocation matrix, then 

CN5 = w - (10.17) 

- 
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and 

(CN+AcN)i = w, (10.18) 

where g = ian)zcl, i = j",jfEl, w = Iw(x~)I~=~ and AC N is the error in the evalu- 

ation of C N- 
Standard error estimates show that 

Iball (0.11 AcNII llC;lll (10.19) 

where CI is independent of N [51]. Consequently the progagation of error is de- 

termined by ]Ic~~II. w e now turn to the problem of estimating this quantity. 

Rather than analyzeJJC~'lJd irectly we introduce a suitable vector norm on 

gN(~N=I(21,22,...,2N) 12 i complex, i = 1,2,..., N)) and use the induced matrix 

norm instead. 

Definition. Let IX,?N,=, be the weights of the quadrature rule QN. Let .zsCN 

and define 

Ilzil~ = (7 ~~1~~1~)~'~. (10.20) 
k=l 

Since xk>O it is straightforward to verify that11 zII y is a norm on TN. Let 

T : CN+CN be an NxN complex matrix, and let ll~ll Q be the matrix norm of T induced 

by 11 11 ;- Using these definitions we arrive at the following theorem. 

Theorem 10.2. Let cN be the collocation matrix and let ~=s~p II (H+K~)-~II . Let 

a=[a (x,)1, where ix,}:=, are the collocation points. Then 
n 

llCN -‘I( ’ ( T (1 aell( Q. 

Proof. Let 5 = ian}fEl and x = {w(x~)}:=~ Then 

CNfi = w. - 
Now 

a,(x) = 7 
n=l 

an-f,(x) 

so that 

HQN(x) = y 
n=l 

anan (x) 

and 

(WN) (x,) = : 
n=l 

anan( (10.21) 
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From (10.5) it follows that 

aN = (H+K~)-I~~ 

so that 

11 'blqII y s 11 (H+KN) -71 Ilw,!laTII WNII a = T&Klw~XK~ 12)1’2=-cll WI1 ;. 

Since H is unitary [ ~I,~~~JJ,/]~=IIH$~IJ a# giving 

Letting fl = (10.21) gives 

-1 
a=a H. - -- 

Taking norms we get 

But ll~lf = IIH$Nlla giving 

llall~ 2 -rIlamlllQ II wll2Q 

From (10.24) it follows that 

(10.22) 

(10.24) 

Ilc$ II Q, T II cl II Q 0 

Using the theorem it is easily shown that 

Thus the propagation of numerical error in the collocation matrix depends essen- 

tially on I/<'(( '. At present we have no theory to predict the growth of 

11 61 p * However numerical experimentation has shown that Ila-lJIQ grows slowly 
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with N so that for l<N<ZO the collocation matrix is well-conditioned. From -- 
this we conclude that reduction in numerical error for fixed N requires 

careful evaluation of the integrals in CN. 

In TWODI-I difficulties arose in unsteady problems where we found it 

difficult to obtain more than 3-4 decimalaccuracy. Since the above analysis 

indicates that inverting the collocation matrix is numerically stable, we 

conjecture that the source of the difficulty is the improper integration of 

the log terms in the kernel. In section 12 we show that this is in fact the 

case. A thousand fold increase in accuracy is obtained by efficient integra- 

tion of the singular terms. 
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111. Convergence Acceleration 

This section presents a theoretical error analysis of various methods which 

might be used for improving the rate of computational convergence when flaps are 

present. 

As we have shown in section 10 Bland's collocation method converges rapidly 

when the downwash is smooth. However, if the airfoil contains flaps, the results 

presented in Table 3-6 indicate that for physically important w's a convergence 

rate no better than 0(1/N) can be expected. This is disappointing, since an en- 

gineering accuracy of O(10m3) would appear to require something on the order of 

300 basis elements. As TWODI can presently accommodate a maximum of 24 basis 

elements it might appear that the flap problem is essentially intractable with 

today's computing capability. 

This circumstance naturally leads one to look for alternate methods of 

solving the genralized airfoil equation when flaps are present: the goal being 

to obtain a convergence rate sufficiently great so that the stated degree of 

accuracy can be achieved within the limitations of our existing code. 

(a) 

(b) 

Cc) 

Cd) 

(e) 

(f) 

A great many possibilities present themselves. Among the choices are: 

Modification of the collocation method by either changing the basis elements, 

the collocation points, or both. 

Changing the basic method of solution to something like Galerkin's method 

[51 or least squares [8]. 

Singularity subtraction. This is commonly referred to as Landahl's method 

[52] in three dimensional problems and has been developed by Rowe et al [53], 

[541. 

Iterative improvement. 

The use of reverse flow theorems 1551, [561. 

The use of extrapolation methods. 

Since Bland's collocation method is understood theoretically, and is efficient 

for smooth downwashes, it is presently felt that improvements should be sought 

utilizing as much of the output of TWODI as possible. For this reason we have 

ruled out category (a). In addition, our examination of results achieved by 

Milne in [56] indicates that the 0(1/N) rate of convergence of flaps may be in- 

herent in any collocation method using a continuous representation of QN, regard- 
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less of the choice of colloation points or basis elements. However, some recent 

work by Nissim and Lottati [571 using a piecewise continuous representation of 

$N for Possio's equation seems to indicate that considerable improvement may be 

achieved over standard methods. Since we have had little time to evaluate this 

work, such representations are not considered in this report. 

Because of the three way equivalence of Galerkin's method, collocation and 

least squares established in [51, use of methods in category (b) is also ruled 

out. We are thus left with techniques in (c)-(f). 

Although such methods have been discussed in the literature for many years, 

we have been unable to find any discussion of their theoretical properties and 

little evidence of the controlled numerical experimentation necessary to dis- 

tinguish among competing techniques. For this reason we have included a fairly 

detailed examination of these procedures which we hope will clarify our reasons 

for not finding them effective at the present time. Since the analysis that 

follows in sections ll.lto 11.3 is fairly involved, we observe that the reader 

may, with little loss in continuity, skip these and proceed to section 11.4. The 

principal results reported in sections 11.1-11.3 indicate that the techniques 

(c)-(e) yield onlyamodest increase in the rate of convergence of Bland's colloca- 

tion method at the expense of substantially increased arithmetic. These facts 

ultimately lead us to examine the use of Richardson extrapolation as a means of 

accelerating convergence. 

While we have not yet completely automated this technique, it presently can 

be used in conjunction with some preliminary data analysis to obtain the stated 

goal of errors of order 10m3 or less for a wide variety of flow problems. The 

principal drawback to total automation is the oscillatory nature of the conver- 

gence when flaps are present. In addition, the period of oscillation appears to 

depend on the location of the hinge point, and cannot, at present, be predicted 

theoretically. As the analysis that follows shows, there is reason to believe 

that a combination of either singularity subtraction and/or iterative improvement 

in conjunction with extrapolation may yield the most efficient algorithms. 
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11.1 Landahl's method 

Because of its widespread use in three dimensional calculations 1531, [54] we 

begin with an examination of Landahl's method for the solution of (6.1). The aim 

is to find an equivalent integral equation with a smoother downwash than w. In 

principal there are a variety of implementations of the basic idea, and we discuss 

two of these. From a mathematical point of view the method may be seen as a gen- 

eralization of the well known Kantorovich regularization method used for solving 

integralequationsof the second kind 1511 and our analysis follows closely that of 

Atkinson presented in [51]. 

11.1.1 Landahl I. 

We consider solving the integral equation 

(H+K)$ = W. (11.1) 

Let $, be an approximation to $. Using I), we define the residual downwash w R by 

WR 
= W-(H+IC)$ 

0’ 
(11.2) 

and the residual pressure !/I R by 
(H+K)$~ = wR. (11.3) 

Theorem 11.1. 3, = Qo+eR. 

Proof. From (11.2) and (11.3) it is seen that 

(H+K) (IJJ~+$R) = (H+K)I~~+(H+K)$~ = w-wR+wR = W. 

Thus QoWR solves (11.1). Using the fact that (11.1) has a unique solution it fol- 

lows that $ = Qo+$, 0 

From Theorem (11.1) it is seen that II, can be determined by solving (11.3) instead 

of (11.1). Basically we are considering a generalization of iterative refinement used 

for solving linear algebraic equations [511. Par, the method to be effective $, must 

somehow be determined so that the residual downwash is smoother than w; thus solving 

for $, -would give a more rapid rate of convergence than obtaining J, directly. 

Viewing the technique as iterative refinement we might proceed as follows. Let 

'Co be obtained using Bland's collocation with the maximal number of basis elements N. 

(presently N=ZO). That iq, $ solves 
0 

(H+~~)ljl~ = wN. (11.4) 

- 



In this case 

"R = (H+K)IJ~-w 

and letting $i be the approximation to J, R 
using N basis elements gives 

(H+K~)$: = LN(WR) - 

We take our approximation to $ as 

(11.5) 

$, = JI;+Jlo. (11.6) 

Hence, (11.6) gives 

6, = (H+~)-'w~+(H+~~)-~~~(w~) 

= (H+KN) -lrwN+LN(WR) 1 

= (H+K~) -liLN(~)+LN((~+~)$O)-~)l 

= (H+K~) -l [LN (WI 1 - 

Thus $J,=$, and no improvement can be expected. From the above result it is seen 

that $, must be chosen in some other way than by (11.4). 

To do this let H+K be decomposed as 

H+K = H+K +K 12 
(11.7) 

where it is assumed that (H+K1) 
-1 

exists. Let 

ij~, = (H+Kl)-lw (11.8) 

and assume that Q. can be determined accurately (essentially analytically). Then 

in this case 

WR = w-(H+K)$~ = w-(H+K~)$~-K~$~ = -K2Qo. 

Thus the residual pressure $, satisfies the equation 

(H+K)$~ = -K~$~. (11.9) 

If it is assumed that K2 satisfies (A-Z), then WR = -K2Qo is continuous. If it 

is possible to effect the kernel splitting K=K +K 12 so that K 2 is highly differen- 

tiable and (H+Kl) has a known inverse, then (11.9) should present a more tractable 
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problem to solve than (11.1). To obtain a numerical approximation to $ (11.9) is 
N solved by collocation giving a function I/I, satisfying 

(H+KN+ = -LN(K2$o) = w"R. (11.10) 

Let 

5, = JI,+*;. (11.11) 

is then taken as our approximation to $. The following theorem justifies this 

procedure. 

Theorem 11.2. Let i, be defined by (11.11). Assume that Kl satisfies (A-l)-(A-3) 

so that 11 KIN-~lI + 0. Then i N converges to $ in Lz and 

11 ‘b-G, I& 111 (H+s) -’ 11 f 11 (KIN-K) (H+K1)-1K2’b 11,’ Il(K2N-K) J, II,]. (11.12) 

Proof. We first show thatGNsatisfies 

(H+f&J) ;, = w+(KINQo- Kl$o). (11.13) 

To see this observe that 

= -KzN$o-(K lN+K2N)$; + W 0 

= -!~:2N$o-(K1N+K2N)$~~~-Kl~o 

= -KzNGN-KIN$; - Kl’bo+w 

= -K2N$N-KlN$; - KIN~o+KIN~o-Kl~o+w 

= -KN$N +(KIN-Kl)$o+w. (11.14) 

Thus (11.13) follows. To obtain (11.12) write 

$ = (H+K)-‘W 

and 

iN = (H+K~) -lw+(H+KN~l[(KIN-K)$o]. 
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Subtracting gives 

$4, = (~+~)-1w-(~+~~)-1w-(~+~~)-l[(~1~-~1)~lol 

= (H+K~)-~{(~-K) (H+K)-lw-(~l~-~l)$ol 

= (H+Q -Ii (s-J.0 (~+K)-lw-(~l~-~l) (~+~l)-'w1 

Now 

KN-K = (KlN-Kl)+(~2N-~2) 

SO that the inner term in (11.15) becomes 

(KIN-~l) (H+K)-~+(K~~-K~) (~+~j-l-(Kl~-~l) (H+K~)-~ 

= (KIN-~l)( (H+K)-~-(H+K~)-~~+(K,~-K~) (H+K~)-I 

= (KIN-%) (H+K~) -1 (Kl-~) (H+K)-l+(~ 2N-K2) (H+K) 
-1 

(11.15) 

(11.16) 

Substituting (11.16) into (11.151, using (H+K) -'w = $ and taking norms gives (ll.lZ)n 

Equation (11.12) shows explicitly how the convergence rate of $J, to $ depends 

on the splitting of K. If K2 can be chosen so that it is very smooth, then on the 

basis of (11.12) we would expect rapid convergence of $, to 0. (This probably justi- 

fies its successinthree dimensional free air calculations.) At present the only fea,- 

sible splitting when walls are present seems to be the trivial one, Kl=O, K2=K. In 

this case rl, o is determined by 

HQO 
=w (11.17) 

which can generally be obtained analytically via the Sghngen inversion formula [30]. 

The residual pressure then satisfies 

(H+K)@K = -KH-‘w, 

and GN is obtained from 

(H+KJG~ = w. 
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The error estimate 11.12 now simplifies to 

(11.18) 

Using (11.18) we can directly compare the rate of convergence of 5, to that of 

+N- For GN the rate is proportional to ~~H$-LN(H$)l~uwhile for GN it is propor- 

tional to IIK~-L~(K~)II,. Since KJ, is continuous GN should converge faster than 

Jhr, but for discontinuous downwashes of the type associated with flaps we anti- 

cipate a rate no better than O(l/N2) since K$ will in general not be differenti- 

able due to the logarithmic singularity in Kl- 

Thus Landahl's method can be expected to give some improvement, but at the 

expense of having to determine the functions $. and KI),. Generally K$, will have 

to be calculated to high accuracy numerically. This requires the evaluation of the 

kernel E(x-e) at the points xi-c. 

{Cjly 

7 
where {xi}: are the collocation points and 

are quadrature nodes. Using logarithmic Gaussian quadrature one should be 

able to evaluate these integrals fairly efficiently. Since for Bland's equation 

the bulk of the computing time goes into the calculation of the kernel, there should 

be an N where the amount of arithmetic needed to implement Landahl's method is less 

for a given accuracy than using collocation directly on (11.1). This tradeoff point 

will have to be determined experimentally and will be a topic of future investiga- 

tion. 

11.1.2 Lanaahl II 

In order to achieve a possible analytic simplification in the evaluation of 

$0 
via (11.17) we consider the following modification of the previous procedure. 

Assume that v7 can be decomposed as 

(11.19) 

where VI s is the singular part of w and v7 c is the continuous part. In this case 

and the residual downwash is given by 

w R = WC-KH-L. 

The residual pressure is obtained from 

(H+K)JIK = wc-KJI . 
0 

(11.20) 

(11.21) 

(11.22) 
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Eq. (11.22) is solved by collocation to give an approximation JI"R to ,J,R. The ap- 
proximation to Q is taken to be 

Using arguments similar to those above we arrive at the following theorem. 

Theorem 11.3. Let GN be given by (11.23). Then GN converges to $ and 

11 ‘-5,11, 2 11 cH+\) -‘II ( 11 WJ-‘.Qb 11, +I1 WC-LN(wc) I&} _ 

(11.23) 

(11.24) 

See Ref. [58] for details. Proof. Note that from (11.24) the convergence rate 
of Landahl II should be the same as that of Landahl I, but that $I, should be easier 

to evaluate0 
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11.2 Iteration 
A common procedure in numerical analysis for solving an equation is to use 

iteration. For linear equations Picard iteration is a well-known method. Appli- 

cation of this to (11.1) determines a sequence of approximations to J, by the fol- 

lowing scheme. Let $, be an initial approximation to J, andrecursively define 

Q - n>l by 

HI&+K$,-~ = w. 

Since llH/l = 1 a sufficient condition for J, n to converge to JJJ is that [IK[[ ~1. 

The error is given by 

(11.25) 

(11.26) 

From (11.26) one sees that the closer $, is to JI the more rapidly JI, converges to 

$- If $, is chosen as a collocation approximation to J, then on the basis of the 

above argument it seems reasonable that iterating on it would be a useful method for 

accelerating convergence. The basic difficulty that we encounter is the apparent 

problem of calculating more than one iterate, so that we restrict ourselves to con- 

sidering the effect of a single iteration. 

Before proceeding, we point out that our attention was drawn to this method 

by the work of Sloan, Burn and Datyner 1591, and Sloan [601, on the use of iteration 

for Galerkin's method for integral equations of the second kind. It was apparently 

first demonstrated in[59] that iteration on a Galerkin approximation gave super- 

linear convergence. In addition to Sloan et al the method has also been used by 

Phillips in conjunction with collocation for equations of the second kind [61]. 

Since we will discuss both collocation and Galerkin's method in this section a slight 

change in notation is introduced. &E will denote the collocation approximation to 

$ and JIi will denote the Galerkin approximation [51. 

Let G, be the first Picard iterate of $E defined by 

“GN + W; = w. 

Theorem 11.4. iN converges uniformly to the solution $ of 11.1. 

Proof. From (11.27) it is seen that 
iN = w-H-lK$;. 

(11.27) 

(11.28) 

I 

_-.__ _. ._. _ __~ ._ 

.’ :’ .. 
---_??_ 

;., I . ,, ,,, ; ;; ,, 
.I_., ,” , 
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It now follows from the Sghngeninversion formula that H -1 K is an integral operator 

with Hilbert-Schmidt kernel 151. Let 2 denote the kernel of H-1K. Then 

$ N (xl = w(x)- K(x,0@)d& 

Similarly 

I 

1 
l)(x) = w(x)- 1-51 

J 1+5 K(x,E)$(~)d~. 
-1 

This gives 

$(XbJIN(X) = K(x,<) [Q(+$;(s)ld~- 

By the Cauchy-Schwarz inequality 

max I$(x)-GNN(x) l$ll $-$~ll, 
-l<x<l -- 

But 11 Q-~~II ,,+ 0 so that cN(x) converges uniformly to g(x) 0 

From the uniform convergence of 3, to $ we anticipate that the sequence (3,) 

should be better behaved than {I):) , and possibly free of the Gibbs phenomena present 

in L 2 convergence. One also expects a more rapid rate of convergence than that for 

collocation alone. For equations of the second kind the results of Phillips appear 

to indicate this 1611. However we have not been able to prove this at present for 

Bland's equation. 

Using Theorem (4.5) of 151 as a guide we expect that for even moderate N that 

the collocation and Galerkin solutions should be close, and it is for Galerkin's 

method that accelerated convergence can be established. 

Let $z be the Galerkin approximation to $ [ 51, and observe that $i satisfies 

H$>vNK$; = N ll w 

where n N is the operator of orthogonal projection onto Span 

first Picard iterate of $I:- Then JIz solves 

H@K$; = w. 

Applying vN to both sides of (11.31) gives 

nNH$;+nNKN$; = N n w. 

(11.30) 

Let $i be the 

(11.31) 

(11.32) 

. --..._ -.--. _-__- -__.- --__ ~- - _ - - - - _ _ . - ‘-;---~~-. -.,-_ --- _._._- - _ _. ._ 

,... ..- 
_i ., 

I 1’ I 
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G Since I), satisfies (11.30) we get 

G vNH$; = HqN. 

Using (11.33) in (11.31) shows that $J: solves 

(11.33) 

H+(H-lrNH,$; = w. (11.34) 

Let QN = HD1vNH and observe that by the unitarity of H that QN is the operator of 

orthogonal projection onto Span {an]:. This gives $i as the solution to 

(H+KQN) '4; = w. 

We now consider the convergence of $i to $. First, note that by the same argu- 

ment that was used in Theorem 11.4 that $2 converges uniformly to $. However, here 

we can establish a superlinear rate of convergence. Our result is a generalization 

of Sloan's [591,[601 for integral equations of the second kind. 

Theorem 11.5 as 
2 

N converges in L a to $ and 

II UJ-Q~II,~ II(H+KQ~)-~II II K-KQ,II II +Q,QII~- (11.35) 

Proof. First observe that IIK-KQ,II -f o ~51. From this it follows that (H+KQ,~~ 

exists for N sufficiently large.. Thus 

Q 
S 

N = (H+KQN)-lw. 

This gives 

ICI-$: = (H+K)-lw- (H+KQ~)-~w 

NOW 

so that 

= (H+KQ~) -~(KQ~-K)$- 

JI = QN$+(I-QN)$f 

(KQ~-K)$ = (KQ~-K)Q~$+(KQ~-K) (I-Q,)& 

Since Qi = Q,, 

(KQ,) Q,$-KQ,@ = KQN$-KQN$ =O. 

(11.36) 

(11.37)' 



Using (11.37) in (11.36) gives 

$-a; = (H+KQN) -' (KQ~-K) (QJ-Q,~J) (11.38) 

Taking norms on both sides of (11.38) gives the result0 

BY a similar argument to that above it is easily shown that 

11 W,GII,5 11 (H+n>,K)-'ll bQ,d, - (11.39) 

Comparing (11.35) and (11.39) shows that the rate of convergence of IJIE to J, 

is enhanced by the factor (IK-KQ~II over that of I/J:. For steady problems the log- 

arithmic terms in K will be absent so that II K-KQ,II should converge to 0 rapidly 

thus providing a more rapid rate of convergence than I(. For unsteady problems 

it follows from Theorem (4.5) of [5] that 

I[ K-KQN 11 = 0 (l/h , 

so that for discontinuous downwashes it follows that 

(11.40) 

11 ‘k$]l, = 0(1/N), (11.41) 

a rate equal to that observed for collocation. As indicated in section 10, this 

may very well be pessimistic, however a rate no better than 0(1/N 312 ) is anticipated. 

This at present appears to be too slow a rate to achieve the desired accuracy of 

O(10W3) error with N<24. - 
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11.3 Reverse flow theorems 

A method of long standing in the aerodynamics literature for solving flow 

problems has been the use of reverse flow theorems [55],[561. Originally intro- 

duced as a technique for decreasing the computation time in calculating lift and 

pitching moment it also appears to have some promise for increasing the rate of 

convergence of integrated quantities for problems with flaps. 

It was shown in [51 that such quantities as lift, pitching moment and gener- 

alized aerodynamic forces could be calculated in terms of inner products <f, $> 
Y 

where f is the function representing the particular moment of interest. The basic 

idea of a reverse flow theorem consists of evaluating <f,$> in terms of the solu- 
Y 

tion to an appropriate adjoint problem. 

To be more precise let H* and K* be the Hilbert space adjoints of H and K [5) 

and consider calculating the inner product <f,QBy,where fsLL. 
Y 

Let a* be the unique 

solution to 

(H*+K*)+* = f. (11.42) 

(That $* exists and is unique follows from the fact that H+K is one to one and the 

Fredholm alternative.) 

Theorem 11.6. <f,$> = <$*&oa 
Y 

Proof. Ry the definition of adjoint we find that 

<f,$' = <(H*+K*)$*, $> 
Y 

= <$*,(H+K)$>~ 

= <$*,w>an 

(11.43) 

From the theorem we observe that if f is "smoother" than w. then solving for 

$* should present a better behaved problem than solving for $ directly if one only 

wants to calculate <f,$> 
Y 

rather than $ itself. 

Theorem (11.6) suggests the following scheme for approximating <f,$> . Let 
Y 

$i be a collocation approximation to $* and take <w,$iBY as an approximation 
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to <f,$> . 
Y 

It is easily shown that $i converges to JI so that <w.JIi>, converges 

to <w,$*'a = <f,@ . Thus the method is well defined. 
Y 

Using the Cauchy-Schwarz 

inequality it follows [48] that 

If f is a polynomial, then for I? sufficiently large f = fN and (11.44) becomes 

l<f,$>y-<w,$;>allll ~11 arll (K*-s)$*Il a] - 

(11.44) 

(11.45) 

The convergence given by (11.45) is then analogous to that achieved using a 

"degenerate" kernel rather than a projection method [51]. 

Although (11.45) indicates good convergence for a "polynomial" moment the 

method discussed above will generally be ineffective if f .represents a discontin- 

uous moment such as the hinge moment, becauseinthiscase the adjoint problem (11.42) 

is of the same type as (H+K]$=w. Since for some problems the reverse flow Theorem 

11.6 appears to have improved convergence properties we feel that its use should 

be further investigated. 

11.4 Other Methods 

There are other procedures that have recently been proposed for the solution 

of problems with flaps. Among these are the semi-analytic methods of Williams [62] 
and [63], and several projection methods proposed by Milne [56]. These techniques 

have yet to be investigated and would require one to develop algorithms different 

from that employed in TWODI. Although we have ruled out none of the above as 

future candidates, our analysis indicates that none of these would provide suffi- 

ciently increased accuracy without making major alterations in our existing code. 
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11.5 Extrapolation 

As the discussion above pointed out it is presently felt that incorporating 

any of the above methods of convergence acceleration would not provide an acceptable 

degree of accuracy without making substantial changes in TWODI. For this reason 

we have begun investigating methods which can make the maximum use of the output 

of our program. As we presently have the capability of solving many problems at 

once, and with considerable efficiency, a reasonable approach is to try to combine 

these solutions effectively for enhanced accuracy, A standard procedure for doing 

this in numerical analysis is the method of extrapolation [501. Here various solu- 

tions computed for different numbers of basis elements are combined either linearly 

or non-linearly to produce solutions which have higher order accuracy than any of 

the original ones. Such methods are commonplace in codes for solving differential 

equations [371,[641 but seem not to have attracted much attention for the solution 

of integral equations [501,[651. As we shall see, their effective use requires 

one to have available known asymptotic expansions for the error in the numerical 

approximation as a function of the number of basis elements. Such expansions seem 

to be lacking in general for collocation methods and in particular for the solution 

of Bland's integral equation. However, using the error estimate (10.7) as a guide, 

along with the examination of results for the free air case we show how to obtain 

the proper form of the error and thus to extrapolate correctly. 

Although many forms of extrapolation are possible, we have chosen the analogue 

of Richardson extrapolation [50] because one can easily obtain the correct order 

of convergence. For other methods, such as Aitken extrapolation, this is not easily 

done [373. We begin by presenting the basic theory of this method. 

Let a be a complex number and let {an3 be a sequence converging to a. Suppose 
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it is known that the error Ed= a-an has an expansion of the form 

E n = al/n c1+a2/n u2+ . . . (11.46) 

where IJ~<u~<cI~... The sequence (a,) is not necessarily convergent but is assumed 

to have the property that 

lim n”m(cn- F 

na j=l 
aj/ncj) = 0. (11.47) 

Such an expansion is called asymptotic. 

For simplicity we restrict ourselves to the case where all the (sj's are integers 

and in particular assume that uj=j. Thus ~~ has the form 

E = al/n+a2/n2+a3/n3+... (11.48) 
n 

The basic idea of Richardson extrapolation is to compute subsequences ca&,~~C1, 

and then to combine these in such a way to form new approximations which converge 

more rapidly to a than (an). For example, consider Z,' = 2a2n-an. Then 

a-z; = [~(cY-al/ n-a2/4n2.. .)-( -a /n-a /n 2 2 
12 . ..)I = -a /2n 2 f... (11.49) 

Thus {ZA] is accurate to order l/n2. {Zi] is referred to as a sequence of first 

order extrapolations of {an). 

For each j it is possible to calculate a sequence {Zi] which has the property 

that 
a-zi = a:/nj+1+a;/hj+2W.. 

Such a sequence will be called a sequence of j 

For example, onepossibility for Z2 is 

th order extrapolations of (an). 

n 

Z2 n 
= nn/3-2a2n+8a4n/3t 

and for Z3 n 

(11.50) 

(11.51) 

(11.52) 
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Higher order extrapolation formulas can also be obtained. We illustrate these with 

a derivation of (11.52). 

From (11.48) it follows that 

E n = al/n+a2/n2+a3/n3+..., 

3 
'2n = a /2n+a /4n2+a /8n 1 2 3 +.-., 

2 3 = a E4n 1 /4n+a2/16n +a3/8n f..., 

(11.531) 

(11.532) 

(11.533) 

E8n = a1/Sn+a2/64n2i-a3/512n3+... (11.534) 

(ci,B,y) are now determined so that 

f "e2n +tk 4n+Ye8n 
14 E n = a4/n f... (11.54) 

From (11.53) this requires that 

a/2+6/4+y/8+1 = 0, (11.5Sl) 

a/4+6/16+y/64+1 = 0, 

a/8+6/64+y/512+1 = 0, 

Solving (11.55) gives 

CL = -14,6 = 56, y = -64. 

Substituting into (11.54) gives 

(11.552) 

(11.553) 

(11.56) 

= u-(-u- /21+2~~~~/3-8a~,/3+64a8~/211 
n 

= ai/21n4+... 

Letting 

z; = -an/21+20r2n/3-8ci4n/3+64ci8n/21 

shows that (11.50) is satisfied for j=3. 

In practice it is most common to use the subsequences ca2kn?# 1Lkzj, to obtain 

the sequence {Zi]. Solving the following set of linear equations allows one to 

--- 
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obtain the appropriate coefficients for jth order extrapolation. 

In this case we have 

l/4 
l/16 

. _ . l/27 

1/4j 

l,2j2 

+B.E j = a. J 2 n J+l 
/n j+l+ . . . 

(11.57) 

(11.58) 

Since the coefficient matrix in (11.57) is a Vandermonde matrix [S], equation 

(11.57) is uniquely solvable and the sequence {!??n] satisfying (11.58) is well defined. 

To determine the applicability of these formulas to the solution of problems 

with flaps the results of Tables 3-6 were used. Here we observe the curious fact 

that for a midchord flap the subsequence (a 2n n=l(an= lift or norm) appears to sat- PO 
6 isfy (11.48) and for a three-quarter chord flap the subsequence {a3n)n=1 appears to 

have the same property. Thus for a mid-chord flap it seems to be appropriate to 

extrapolate on Ca2,a4,a8,a16 ] and for the three-quarter chord flap we use (a3,a6,c12]. 

This oscillatory behavior, with the period of oscillation apparently depending on 

the location of the hinge point was unanticipated based on our experience with the 

rapid and monotone convergence of TWODI-I for smooth downwashes. At present it 
appears that the period of oscillation is independent of the kernel K so that 5 
suitable subsequence for extrapolation can be obtained by solving a series of steady 

free air problems. This can be done rapidly with our existing program. 

To see the effect of using successively higher order extrapolations Zi, Z2, 
24 and Zz were calculated for the lift and norm for the mid-chord flap and Zi, Z3 

were obtained for the three quarter chord flap. The results are listed in Tables 

7-9 below. 

Table 7. Extrapolation of CL6 and norm for a midchord flap (M=O,k=O,n=-) 

Norm %i 
% error % error 

(norm] 
Exact 1.60337 5.14159 

(CLQ 

Zti 1.60241 5.13466 -.0599 -.1348 

zz 1.60327 5.14069 -.0062 -.0175 

1.60335 5.14139 -.0012 -. 0039 
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Table 8. Extrapolation of CL& for an oscillating flap hinged at the 50% chord 
(M=O, k=.l, n=co) 

real imag magn phase % error(magn) 

Exact 4.33227 -0.43177 4.35373 -5.69 

zi 4.32647 -0.43122 4.34791 -5.69 -0.1337 

24' 4.33153 -0.43171 4.35299 -5.69 -0.0171 

2 4.33210 -0.43176 4.35359 -5.69 -0.0033 

Table 9. Extrapolation of CL 
6 

for an oscillating flap hinged at the 75% chord 

(M=O, k=.l. n==) 

real imag magn phase % error(magn) 

Exact 3.20444 -0.48982 3.24166 -8.69 

Z1 3.19235 -0.48792 3.22942 -8.69 -0.3776 
6 

3.20191 -0.48944 3.23910 -8.69 -0.0790 

Table 10. Effect of using incorrect subseuuences for extrapolation 
real imag magn phase % error(magn) 

midchord flap 

Z1 4.32230 -0.43083 4.34372 -5.69 -0.2300 

Z; 4.57927 -0.45301 4.60163 -5.65 +5.6939 

three-quarter chord flap 

zi 3.51114 -0.53452 3.55159 -8.66 9.5608 

Z2 3.77727 -0.57288 3.82352 -8.92 17.9494 

4.00144 -0.60507 4.04693 -8.60 24.8413 
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The results are quite interesting showing that 4-5 decimal accuracy is obtain- 

ed using at most 16 basis elements. Thus it appears that an error of 0(10'3) can be 

obtained using the present code, followed by the minimal amount of manual arithmetic 

required to do the necessary extrapolations. 

As an independent check on the validity of the above procedures we have extra- 

polated some results presented by Milne [561 in his development of finite element 

methods for solving (3.8). Table 11 taken from [561 gives values of lift, pitch- 
ing moment and hinge moment for approximate solutions to (3.8) using basis elements 

which were piecewise linear. 

Again it is easy to show that the errors sn satisfy ~~ = a /n+O(l/n 2 
1 ) so that 

extrapolation is feasible. Second order extrapolations are given in Table 11. It 
is interesting to note that the "exact" values are obtained using 48 basis elements 

with extrapolation, whereas the raw value for lift and hinge moments are correct 

to only 2 significant figures using 60 basis elements. 

Table 11. Convergence of section coefficients for 50% flap using finite elements 
(MzO, k=O, n=ca) 

No. of basis Pitching Hinge 
elements Lift Moment Moment 

Exact -3460 -1365 -0780 

12 -3410 -1353 -0756 

24 -3435 -1359 .0767 

36 -3443 -1361 -0771 

48 -3447 -1362 .0775 

60 -3450 -1362 -0780 

7.2 -3460 .1365 .0780 
12 

On the basis of these observations we feel confident that the use of extrapola- 

tion will result in accurate solutions for flow problems with flaps. The main ob- 

stacle remaining to complete automation seems to be the necessity of performing the 

preliminary analysis of a sequence of free air problems in order to determine the 

appropriate subsequence for extrapolation. In this regard it is interesting to note 

that while Bland's collocation method produces oscillatory convergence, Milne's 

finite element procedure does not. Monotone convergence is, as we have seen more 

desirable and further investigation of the methods studied in this section for this 

behavior should be done. 

- -. --- --- - -. ,-_- -- .---- - ------Y--.. - ‘. 
r._ _ . . 

. . _, - .’ * . 
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512,. Effi:cient inteqration of singularities in the kernel 

The basic accuracy of the TWODI program for smooth downwashes is about 6 decimals 

in steady flow and 3 decimals in unsteady flow using 5-10 basis elements. We will 

now show how this can be improved to 6 decimals in both steady and unsteady flow with 

little increase in the amount of arithmetic. 

12.1 General procedure for logarithmic singularities 

in efficient solution of the airfoil equation (3.16) requires that the integral 

for the collocation matrix 

K(xm-S,M,k,n,... h,(S) fK (12.1) 

be computed efficiently for all values of the parameters M,k,n, etc. In general, the 

kernel contains a dominant Cauchy singularity, a weaker logarithmic singularity, and 

is otherwise analytic. It can be shown that 

* -ikx K(x,k,M,n,...) = i - 'k e 
62 

F~ (x,k,M) loglxl-e-ikx F2 (x,k,M,n,...), (12.2) 

where Fl and F2 are analytic. We will identify these functions below. 

The procedure originally used by Bland [ 8 I, [g] to compute ~ is the one 

presently used in TWODI and is described in section 6. The Cauchy singularity is 

integrated in closed form using the Akheizer-Bland transform (5.3) and an additional 

closed form integration is obtained by using the logarithmic transform (5.24). The 

remaining continuous part of the kernel multiplied by the appropriate basis function 

is then integrated approximately by Jacobi-Gaussian quadrature (5.30). Thus the 

only source of error (other than roundoff) in computing Cmn presently is quadrature 

error from integrating the continuous part of the kernel. 

It is well known [371, [38] that high precision Gaussian quadrature formulas 

work best with analytic integrands. Splitting the kernel into the Cauchy, logarith- 

mic and continuous parts as described in section 6, 

K(x,k,M.n,-.. ) = $ - ~loglxj + Kc (x,k,M,n,...), (12.3) 
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we see by (12.2) that the continuous part of the kernel is given by 

Kc(x,k,M,n,...) = Ik (l-e -ikx 
82 

F~ (x,k,M)) loqlxl - eBikxF2 (x,k,M,n,...) (12.4) 

and is clearly not analytic because it contains nondifferentiable terms of the 

form 

x log)xl, x* logjxj,... 

To assess the errors resulting from integrating Kc without properly accounting 

for these logarithmic terms, we computed 

1 
xnlog x dx 

0 

using Leqendre-Gaussian quadrature for various n and for various numbers NQ of 

quadrature points. The results, shown in Table 12, indicate that for n=l, 16 point 

quadrature is at best 5 decimal accurate. 

J 
1 

Table 12. Error in xnlogxdx using NQ point Legendre-Gaussian quadrature 
0 

% error n=O n=l n=2 

NQ= 1 30.685 -38.629 -55.958 

NQ= 2 10.412 -3.1413 2.3139 

NQ= 4 3.1464 -. 25967 _ 04269 

NQ = 8 -87610 -.01956 .00083 

NQ = 16 -23207 -.00136 .OOOOl 

- 

Since the number of quadrature points used in TWODI equals the number of pres- 

sure basis functions, it is not reasonable to expect to obtain accurate calculations 

for unsteady flow using a small number of basis functions. For example, using 8 ba- 

sis functions we might expect at most 3 or 4 decimal accuracy. This has been borne 

out in practice; using NP = 8, the TWODI-I program was 3 decimal accurate for un- 

steady flow (5, p-811. 

In order to correctly integrate the logarithmic kernel singularity in the pres- 

ence of leading and trailing edge pressure singularities, it is necessary to separate 



-99- 

the interval L-1,1] into four subintervals [-l,al, [a,xl, [x,bl and [b,ll where 

-l<a<x<b<l. (12.5) 

Making the necessary transformations gives six different kinds of integrals, all 

of which can be evaluated quite accurately (12 decimals) using tables stored in 

TWODI: 

f(x,E)dE 

oq (x-S)f(x,S)ldu 

x-a 1 
-- 

71 0 
log ; [ 

+ (x-a)log(x-a) 
TI 1; IJ$$ f(x,C)ldu 

+ (b-x)log(b-x) 
lr 

5 = -l+(l+a)u 

5 = x-(x-aju 

5 = x-(x-a)u 

5 = x+(b-x)u 

5 = x+(b-x)u 

5 = 1-(l-b)u. (12.6) 

Each of the six integrals appearing in the right hand side of (12.6) possesses an 

integrand which is the product of an analytic function shown in square brackets, 

multiplied possibly by a function representing an inverse square root or logarith- 

mic singularity. For obvious reasons, we call these six integrals the leading edge 

inverse square root, upstream logarithm, upstream continuous, downstream continuous, 

downstream logarithm, and trailing edge square root parts, respectively. 
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12.2 The free air incompressible case 

This is the simplest case with which we can test the merits of integrating 

the logarithmic singularity in the kernel using high precision Gaussian quadrature. 

We will show that a thousand fold increase of accuracy results, with only five ba- 

sis functions being required to produce six decimal accuracy. Previously, eight 

basis functions produced three place accuracy. Since accuracy can be traded for 

reduced computer time, the results of this subsection constitute an important step 

toward TWODI handling its own accuracy control in the future. 

In this case the kernel may be written as [5,p.71 

K(x,k,O,m,...) = ; - ike rikx(Ci(klxl) -!- i Si(kx) + y) (12.7) 

where Ci and Si are the cosine and sine integrals. They are given [66,p.2321 by 

Ci(z) = y + log 2 + 
,c, :;:;r;2::; ’ 

(12.8) 

(12.9) 

where y =.57721566490153... is Euler's constant. Combining the above, we obtain 

K(x,k,O,m,...) = $ -ike -ikx loglxj - ike -ikx m (ikx)" (logk+y+$+ I- n=l(n)(n!))- (12-lo) 

Thus we can identify the analytic functions in this case as 

Fl(x,k,O) = 1, (12.11) 

F2(x,k,0,m,.-. ) = ik (log k + Y + 9 + y (ikx)n)- 
m=l (n) (n!) 

(12.12) 

The effect of using equations (12.6) and (12.10) to integrate the complete log- 

arithmic singularity, leaving an analytic integrand to be done by Jacobi-Gaussian 

quadrature is shown in Table 13 for the case of a plunging airfoil. The exact solu- 

tion was obtained from the Kissner-Schwarz comparison [5,p.831. Using the earlier 

method based on the logarithmic transform with anxloglxl singularity in the contin- 

uous part of the kernel, 8 basis functions produced only 3 place accuracy. Table 13 

shows that this is true both of TWODI-I using Bland's kernel with very large height 
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to chord ratios (and large computer times), and of TWODI-III which calculates the 

special kernel (12.10) which is more efficient; this verifies that using Bland's 

kernel with n = 300 is an accurate representation of (12.10). Thus the rather low 

3 decimal accuracy obtained by the original method is due to the manner of integrat- 

ing the remaining part, K , of the kernel. Finally, Table 13 shows that using the 
C 

analytic form of the remaining part of the kernel produces six decimal accuracy with 

only 4 or 5 basis functions. 

The evidence presented by these da.ta strongly indicate that the most efficient 

computing strategy dictates a switchover to integrating the singularities in the 

kernel separately. 

1 Table 13,z: Method of inte~gratinp s.ingu.l=ari$ies. in.t_h_e kernel _ 
Method Kc tYPe NP % - plunge mode (k = 1) 

Exact -2.51156+3.38937i = (4.21850,126.54') 
TWODI-I x loglxl' 8 -2.50990+3.38758i = (4.21608,126.54') 
TWODI-III x loglx12 8 -2.50990+3.38757i = (4.21607,126.54') 
TWODI-III analytic* 1 -1.59997+1.58414i = (2.25153,135.28') 
TWODI-III analytic* 2 -2.55260+3.42614i = (4.27249,126.69') 
TWODI-III analytic2 3 -2.51089+3.389OOi = (4.21781,126.53') 
TWODI-III analytic2 4 -2.51156+3.38937i = (4.21851,126.54') 
TWODI-III analytic* 5 -2.51156+3.38937i = (4.21850,126.54') 

'Using Bland's kernel with n = 300. Approx. 20 min CPU. 

*Using eq. (12.10) for kernel. A few sec. CPU. 
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12.3 The free air compressible case 

Identification of the singularities in the Possio kernel is certainly impor- 

tant to an efficient solution of the free air compressible case, and also may prove 

useful in efficiently computing more general kernels for unsteady flow in wind tun- 

nels with slotted and porous walls. 

The Possio kernel may be expressed [5,p.9] as 

Tk . K(x,k,M,m,...) = - -e 
282 -lkx (fee (iM sgn(x) Bl (2) (kM(xl) _ H (2) (kMlx(,) 

B* 0 B2 

2iB + y log 2 + ik 
X 

c ikh :I (2)pjXj 
0 1) dl, 

0 
62 B2 (12.13) 

where the Hankel functions of the second kind [66,p.360] are given by 

HR (2) = JQ - i YE. (12.14) 

Clearly (12.13) is not in a form suitable for numerical computation. Substituting 

(12.14) gives 

K(x,k,M,m,...) = e -ikx 
{es [- $f$ sgn(x) (Jl( - i Yl(*)) 

+ s (J (y) - iY $$$)I - 9 log 9 
0 0 

ikxu 
-- J t@$?&) - iY (v))duj. 

0 0 
(12.15) 

In order to identify the singularities in (12.15), we first identify the speci- 

fic singularities, as well as analytic functions, which appear in the Bessel func- 

tions. Clearly 

(-;2)m 

Jp = (;I R ; m! (m+k) ! 
m=O 

(12.16) 

is analytic. Let 

Q(1) = - y, $(n+l) = $(n) + + = - y+y k if n>2 (12.17) 
m=l 

denote values of the psi or digamma function [66] for integer arguments. Then 

it follows that 
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Ye(Z) = p (y+lo<) Jo(Z) + ~ o (21, 2G (12.181) 

where 

YIW = - $+ $109 ; JIW- ; Gl(d, (12.182) 

Go(z) =-- -- 
(l!j2 (3!12 

. . . . 

~~(2) = 5 y ($(*+1)+$(*+2)) 
(-;2)* 

n=O n! (n+l) ! 

(12.1gl) 

(12.1g2) 

Obviously Go and Gl are analytic. We note that they may be computed using (12.19) 

or, using standard Bessel function subroutines according to 

G (z) = ;Y,(z)-(y+lo$) Jo(z), 
0 

(12.201) 

G1 (z) = ; Y1(z)-; + log; J1(z). (12.202) 

Combining the above and rearranging it can be shown that 

K(x,k,M,m,...) = $ - $ e -ikx log/xl [(Jo($$- iMJ,.(p )e+$ 

J 
1 

- ikx 
0 

e ijcxu Jo(-g- 
82 

kMxu) du] 

ikM2x 

- e -ikxf [e ",' -l 
_ 2 ~~$7) + g Go+? 

+ z (y+log+ Jo+? + sJ1(+ 

ikx 

l+B 
2 

rk xi + * log M + - 
I 

1 ikxu 
--2-'- 

2B2 0 
es 

B 
(Jo($%- +Go( v, du 

ikxu 
+ % (y+log $f$ 

I 

l- 
oe82 Jo(%du 

k2x 1 
J 

ikxu 
1 

-82 Olog;e B2 Jo(y du), (12.21) 
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which in view of (12.2) gives 

ikx ikXU 

Fl(x,k,M) = [Jo(F) - iM Jl(31e 
82 

J 

1- 
- ikx e B2 J tkMxu 

0 O-@ d" (12.22) 

and -ikM2x 
B2 -1 

F2(x,k,M,m,.--) = e x - f$ Jo(+) .+ $Go+ 

kM 
+ 2 (y+log 282) Jo(F) + 

+ zlog $-J 
ikx 

ckMx) - e Gl(F)e?2- 
1 B2 B2 

ikxu 
ik 1+t3 nk'xi 

J 

1- 
+Blwy+ 2B2 Oe 

82 (Jot+ - $G,(~) du 

J 

1 ikxu 
eB2 Jo(~ kMxu) du 

0 

k2x ' -- 
J 

ikxu -- 

82 0 
log i e B2 Jo(- 7) du. (12.23) 

Equations (12.22) and (12.23) display 

they are not yet in final form and (12.23) 

can be put into final form by first noting 

J; = - Jl 

the desired functions Fl and F2, but 

is still indeterminate for M=O. Fl 

that 

(12.24) 

and integrating by parts to yield 

ikxu ikx ikxu 
1- 

ikx Jo(+du = B2(J0(F)e B2 -l)+kMx e 
J 

B2 J (kfiu 1 7) du. (12.25) 
0 

Substituting (12.25) into (12.22) and simplifying, we finally obtain 

ikx ikx 

Fl(x,k,M) = l+M2(Jo($$%e B2 -1) - iMJl(F)c 

ikxu 
J (kmu 1 r) du. (12.26) 

In this form (12.26) reduces by inspection to (12.11), is easy to compute, and we 

see that 

F1(x,k,M) = 1+M20(kx) (12.27) 

is analytic as asserted earlier. 
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We now obtain a similar reduction for F2. Integrating the last term in (12.21) 
by parts gives 

ikxu 
k2x 1 -- J B2 
B2 0 

log + e Jo(F) du 

ikxu 

= ik ' e B2 -1 kMxu 1 
- 0 u Jo' -)du++ 82 1) 

0 
J,(F) du. (12.28) 

(Wenote that when M=O, (12.28) reduces to 

I 
’ e ikxu 

ik -' du = (ikx)* 
0 U 

ik y 
n=l h-d (n! 1 ' 

which is the last term in (12.12).) Substituting (12.28) into (12.23) gives 
ikxu 

F2(x,k,M,m,...) = ik 
f 

l e 82 

U 
-lJ (kMxu 

o 82 ) d" 
0 

ikxu 

log + (e B2 -1) J (kMxu 1B2'du 

-ikM2x 

+ ikre 
02 -1 . 
ikx +sJo(+ +&Go+ 

+ & (y+log $1 Jo@ + $ Jl(+) 

ikx 

- $109 $$ Jl(f$ + iM G (q)]e 02 
02 1 B 

ikxu 
(J plxu 2i 

0 r)- yGo( =,) du 82 

ikxu 
J (km o ~2) du- 

(12.29) 

(12.30) 



-106- 

Integrating by parts again, it follows that 

ikxu ikx ikxu 

Jo(+e% - ikx 
i- 

le I32 J (kMxu o T)du=B2+M2 Jo(se B2 -kMx J (-u 
0 

1 @du. (12.31) 

Substituting (12.31) and the identity 

kM M2 2 
ik(y+log m)- -2- ~~ + y log T = ik(logk+y+ y)+" (-log % + log 1+8) 

B 1+0 2B2 
(12.32) 

into (12.30) gives 
ikxu 

F2(x,k,M,m,-.. ) = ik[logk+y+ 5 + 
1 e f32 -1 

J (kMxu 
U 

o ~2) dul 

0 
-ikM2x 

i3* 
+ ilr [e 

ikx -' + $ (F +y+log$$) Jo(F) 

- $($ +log$ J,(F) 

ikxu 
ik2x 1 -- 

J B2 0 
[M(y+log$$ + %) Jl(p+iGo(+ e 02 du 

ikxu 

f 

1 1 
log ; Jl ( kMxu) (e 82 

82 -1) du 
0 

2 
+ $(& log% + log*) 262 (12.33) 

which,in view of (12.29), reduces by inspection to (12.12) when M=O, and is clearly 

analytic with the property that 

F2(x,k,M,m,...) = F2(x,k,0,...) + O(kM210g M). (12.34) 



-107- 

One reason for the importance of (12.27) and (12.33) is the ease with which 

they can be computed numerically compared with the original expression (12.13). 

In TWODI, Eland's kernel (3.10)-(3.11) is presently used for all cases except the 

incompressible free air case given by (12.10) and the steady porous wall case 

given by (4.13). However, using Bland's kernel for free air conditions is ineffi- 

cient because the series expressions in (3.11) are quite slowly convergent for 

large values of n. We have already seen in Table 13 the dramatic benefit of using 

the efficient expression (12.10) to compute the kernel for the special case of in- 

compressible flow in free air. We would expect a comparable reduction in computer 

time if (12.2), (12.27) and (12.33) were used to compute the kernel for compressible 

flow in free air. Furthermore, (12.2) represents a computationally efficient split- 

ting of the kernel into three parts 

K(x,k,M,n,... ) = ; + Kl(x,k,M) + K2(x,k,M,n,...), (12.35) 

where 

Kl(x,k,M)= - * e 
f32 

-ikx loglxl Fl(x,k,M), 

and where 

K2(x,k,M,n,...) = K2(x,k,M,",...) + AK2(x,k,M,n,...) 

(12.36) 

(12.37) 

with 

K2(x,k,M,=,...) = -e -ikx 
F2(x.k,M,"r--.) (12.38) 

and with AK2 representing the interference kernel due to the wind tunnel walls. Since 

we now have computationally efficient expressions for all quantities except AK2 and 

since the Fourier transforms of all kernels are easily obtained, it may be that the 

application of Laguerre-Gaussian quadrature to the expression 

AK2(x,k,M,n,...)= -!z- 
c 

c‘z . 

4%. 
elSX[i?(s,k,M,n,... )-K(s,k,M,=,...)lds (12.39) 

-02 

is an efficient way to compute numerically the interference kernels for porous as 

well as slotted wall tunnels. Since the determination of the unsteady porous wall 

kernel remains an open problem, the possibilities of this approach will have to a- 

wait future research. 
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513. Steady airloads for porous wall tunnels 

In this section we present numerical computations for steady airloads in ideal 

porous wall wind tunnels; i.e., those governed by the viscous effect boundary con- 

dition (2.10). Agreement with previous results is demonstrated and new results 

aregivenin the form of compact three dimensional graphs showing airloads for all 

possible combinations of Mach number, height to chord ratio and viscous effect ven- 

tilation coefficient. These graphs are for a fixed downwash but otherwise include 

all possible flow conditions. They can be generalized to unsteady flow but we have 

not done so. This section is an extension of similar results by us [5,§§11-121 for 

fixed Mach numbers in ideal slotted wall tunnels; i.e., those governed by the mass 

effect boundary condition (2.9), and uses the parametric analysis presented above 

in section 4 to combine three independent variables (M,n,v) into two (Bn,Bv). 

Table 14 and Figure 4 present values of lift coefficient andcenter ofpressure 

vs. leakage angle 5. The center of pressure is relatively insensitive to small 

amounts of ventilation and shifts more strongly forward as the open jet condition 

is approached. The trends in both lift and center of pressure using the ideal 

porous wall boundary condition differ appreciably from the trends obtained using 

the ideal slotted wall condition. This is evident upon comparing Figures 4 below 

with Figures 14 and 16 in [5]. Since the limiting case of open or closed walls are 

independent of the boundary condition selected, verification with previous results 

is obtained automatically. Only 5 pressure basis functions were required to obtain 

6 decimal accuracy. Also, the computations proceeded quickly since the kernel 

(4.13) is in closed form. 

Table 15 and Figures 5, 6 and 7 present lift coefficient, pitching moment co- 

efficient and center of pressure for the full range of Mach number, height to chord 

ratio1 and ventilation. The capability to do this so simply is a direct result of 

the parametric reductions 

(x,M,rl,v) + (&, Bn,6v) 

presented in section 4. The doubly infinite domain of the airload surfaces is made 

compact by the transformations 

5 = tan-l (&) , 6n = tan-l(+--). 

'In the present context, we restrict our consideration to tunnels with acoustic 

height to chord ratios not less than 1; thus l(BrlLa. This restriction is entirely 

one of context since the numerics are well behaved for narrower tunnels. 
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The lines 6,1,=0 correspond to the free air condition and show constant airloads for 

all ventilation conditions; this is in keeping with the physical condition that air- 

loads not be affected by the tunnel walls when they are infinitely far away. The 

lines <=O'correspond to a completely closed wall and indicate that both CL, and CM~ 

increase as the walls become closer together; at the same time the center of pressure 

moves aft. The lines c=90° correspond to an open jet tunnel; CL, and CM~ decrease 

as the walls become closer while the center of pressure shifts forward. Between these 

bounding lines, the airloads are shown to be continuous. Finally, by comparing the 

lift and moment surfaces, it is clear that the ventilation coefficients corresponding 

to zero lift interference differ from those corresponding to zero moment interference. 

Table 14 Lift and center of p ---A ressure vs. -__ ventilation for a porous wall tunnel ~- 
M=.85 n=7.5 w(x)=1 NP<5 (6 decimal accuracy) - 

O0 12.235 -25624 
15O 11.460 .25633 
3o" 10.739 .25529 
45O 10.051 .25529 
60' 9.4086 .24936 
75O 8.8017 -24416 
9o" 8.2270 -23723 

= 

.!Tae 15. Section coefficients vs. M, n and v for unit downwash 

en = tan-l(&) 

5 O0 (free) 15O 3o" 45O 

O0 6.28319 6.46436 7.06254 8.29957 
3c" 6.28319 5.62903 5.31359 5.28501 
60' 6.28319 4.89657 3.97490 3.34116 
9o" 6.28319 4.24753 2.89934 1.91357 

8 cM ell 
1 

CY. = tan-l(E) 

5 0' (free) 15O 3o" 45O 

o" .oooooo -.022470 -.094292 -.233113 
3o" .oooooo -.016798 -.076374 -.197892 
60' .OOOOOO .001509 -.011706 -.060754 
9o" .OOOOOO .030282 -085436 -132578 

xcP erl = tan-l(&) 

5 0' (free) 15O 3o" 45O -~- 
o" . 250000 -256952 -276702 -306175 

30' .250000 -255968 .278747 -324888 
60' .250000 -249384 -255890 .286367 
90' .250000 .235741 -191065 -111435 - 
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12 (~=.85,q=7.5) 

% 

10 

8 

A Bland [171 

6 8 Fromme and Golberg [2] 

Solution by TWODI using (4.13) 

4 

-closed wall open jet -4 

2 5 
O0 3o" 60' 9o" 

-26 

xcP 

-25 

-24 

.23 -.-__~~~__ 5 
O0 3o" 60' 9o" 

Figure 4. Steady lift and center of pressure vs. ventilation for a porous wall tunnel ___.-_---~~.-- 
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Figure 5. Steady lift vs. M, n and v for unit downwash -_ 
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Figure 6. Steady moment vs. M, n and v for unit downwash 
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Figure 7. Steady center of pressure vs. M, q and v for unit downwash ---- -_ - _ _ - ---- - - .._ - _ 
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914. Steadv and unsteady_ ~~~er.ference=calcu;la~~ons for ai.rfoils; $th~ flaps i 

The nature of unsteady aerodynamic interference in wind tunnels is not well 

understood at the present time, especially when the walls are ventilated. This 

problem is made mathematically more difficult when flaps are present because of 

the attendant downwash discontinuity at the hinge and the resulting slow conver- 

gence of the numerical calculations. In this section, we present new results for 

steady and unsteady lift interference on airfoil with flaps at various combinations 

of Mach number, reduced frequency and wall ventilation condition. These results 

are based on the method of convergence acceleration by extrapolation to the limit 

as described in section 11 above. 

We take as our configuration of interest an airfoil of chord 18Omm with a 45mm 

trailing edge flap mounted in a wind tunnel of height 550 mm. All calculations be- 

low were performed using second order extrapolation with NP=3,6 and 12. Based on 

our analysis in section 11, we expect these results to have mathematical errors of 

less than -1%. 

Table 16 and Figure 8(a) show the CL6 envelope vs. Mach number, along with the 

exact free air solution. The Mach numbers listed correspond to the Multhopp angles, 

M=sin 8, 8=O", 18',..., 72'. Figure 8(b) shows the interference ratio for Cbb vs. M 

using the same data. In all cases the effect of wall interference is to increase 

the lift for a closed wall and to decrease it for an open jet. At very low speeds, 

these effects are roughly +3% and -36% respectively, increasing in magnitude as the 

Mach number increases. The increase is less and is more delayed with the closed wall 

and it is greater and more gradual with the open jet. At high subsonic speeds, es- 

pecially those above the critical Mach number, transonic nonlinearities will increas- 

ingly alter the interference effects from those predicted by the present linear theory. 
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Table 16. Steady lift interference vs. M for a flap at the three quarter chord __- -- _ 

q=3.05556 free 
BCLg = fi + $ (exact) 

closed wall open jet 

free 
CL&-CL& 

free 
CL&-CL6 

M 
cL6 free 

% 
cL6 free 

%i 

* 000000 3.93081 ?-.027274 2.45693 -. 357908 

-309016 4.14457 +.030125 2.53450 -.370054 

-587785 4.92542 +.014371 2.78953 -.410216 

-809017 7.00387 +.075873 3.30696 -.492014 

.951057 15.26128 +.232474 4.35129 -.648597 

The phenomenon of acoustic resonance was orgininally discovered theoretical- 

ly by Runyan and Watkins 1671 in 1953 and subsequently verfied experimentally by 

Runyan, Woolston and Rainey [36]. Later, Bland 181, [9] showed that for ideal 

slotted wall tunnels described by the boundary condition (2.9), acoustic reso- 

nance will occur at reduced frequencies given by 

MXn k, = K, n=1,2,... (14.1) 

where X, is the nth positive eigenvalue of (3.114). Theoretical calculations 

showing the effect of acoustic resonance on airloads over the full range of 

ventilation coefficients were recently given by Fromme and Golberg [5]. 

Table 17 and Figure 9 present values of CL 
6 

vs. Mach number for open and 

closed tunnel walls at four values of reduced frequency, k=0,.1,.2 and .3. The 

calculations utilize Bland's kernel (3.10) for an ideal slotted wall based on the 

mass effect boundary condition (2.9). A condition of acoustic resonance between 

the airfoil and the wind tunnel walls is displayed at k=.249 for M=.9. A pre- 

cursor of acoustic resonance may be detected at M=.8 in that the magnitude of the 

lift coefficient for the closed wall condition has dropped below the value for 

the open jet condition. This is because the fundamental resonant frequency for 

an open jet is twice as high as the fundamental frequency for a closed wall. The 

onset of resonance may also be detected by the dramatic shift in phase angle be- 

ginning around M=.6 to M=.8. 
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It should be emphasized that the effect of frequency on wind tunnel interference 

is.a continuous one except of course at the actual resonant frequencies. For this 

reason, unsteady wind tunnel tests should carefully take into consideration such un- 

steady interference effects even though the reduced frequencies to be tested may lie 

below their resonance values. 

Table 17. CL6 vs. M,k and 1-1 for an oscillating flap in a wind tunnel 
m--==_---_3- 

75% hinge n=3.05556 

C~(n=m-closed wall) CQ(P=O-open jet) 

M k real imag magn phase real imag magn phase 

.O 

.O 

.O 

.O 

3.93081 0.00000 
3.63755 -0.52198 
3.15090 -0.60877 
2.80157 -0.45100 

0.00000 2.45693 0.00 
0.03078 2.43970 0.72 
0.07723 2.39413 1.85 
0.14703 2.33441 3.61 

.2 

.2 

.2 

.2 

4.01629 0.00000 
3.70295 -0.56739 
3.19239 -0.66681 
2.83538 -0.51065 

3.93081 0.00 2.45693 
3.67481 -8.17 2.43951 
3.20917 -10.94 2.39288 
2.83764 -9.15 2.32977 

4.01629 0.00 2.48840 
3.74617 -8.71 2.47107 
3.26128 -11.80 2.42506 
2.88100 -10.21 2.36358 

0.00000 2.48840 0.00 
0.02451 2.47119 0.57 
0.06541 2.42594 1.55 
0.13075 2.36720 3.17 

.4 

.4 

.4 

.4 

4.31034 0.00000 4.31034 0.00 2.59221 0.00000 2.59221 0.00 
3.91916 -0.73544 3.98757 -10.63 2.57547 0.00202 2.57547 0.05 
3.31937 -0.87977 3.43398 -14.84 2.53205 0.02405 2.53216 0.54 
2.93429 -0.73451 3.02483 -14.05 2.47706 0.07086 2.47808 1.64 

.6 

.6 

.6 

.6 

.O 

.l 

.2 

.3 

.O 

.l 

.2 

.3 

.O 

.l 

.2 

.3 

.O 

.l 

.2 

.3 

.O 

.l 

.2 

4.98528 0.00000 4.98528 0.00 2.80743 0.00000 2.80743 0.00 
4.35658 -1.18762 4.51556 -15.25 2.79291 -0.05360 2.79343 -1.10 
3.50453 -1.44000 3.78884 -22.34 2.75829 -0.08640 2.75965 -1.79 
3.02163 -1;36395 3.31521 -24.30 2.72364 -0.08998 2.72512 -1.89 

.8 

.8 

.8 

.8 

6.84313 0.00000 6.84313 0.00 3.27336 0.00000 3.27336 0.00 
5.00685 -2.81467 5.74377 -29.34 3.27198 -0.22175 3.27949 -3.88 
2.88884 -3.24022 4.34102 -48.28 3.28232 -0.45312 3.31345 -7.86 

.9 

.9 

.9 

.9 

.3 0.65287 -2.84171 2.91574 -77.06 3.33763 -0.74720 3.42024 -12.62 

.o 9.92111 0.00000 9.92111 0.00 3.79549 0.00000 3.79549 0.00 

.l 3.69704 -5.68263 6.77941 -56.95 3.83945 -0.51021 3.87320 -7.57 

.2 -0.75925 -1.22187 1.43855-121.86 3.99142 -1.33569 4.20898 -18.50 

.3 1.80588 -0.32653 1.83517 -10.25 3.28022 -4.17219 5.30726 -51.83 
___-- --~- - ==.=. -- : 
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Figure 8. Steady lift interference vs. - ~~ -_-- M for a flap at the three quarter chord ---_-;-- .._I___ -~-~. -- _- _ 
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0 ?J=o - open jet 

BICLJ M=.2 

4 

3 

;" 
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1 
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Figure 9. CL6 vs. M,k and 1-1 for an oscillating flap in a wind tunnel 
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515. Conclusions 

The numerical calculation of unsteady airloads in ventilated wind tunnels 

has been extended from our previous work [5] to include airfoils with multiple 

leading and trailing edge flaps. This has been accomplished with further 

developments both in the mathematical theory and in the computer program TWODI. 

The computational foundation has been strengthened by establishing a more 

powerful existence and convergence theory for arbitrary downwashes having finite 

norm. This has led to improved error estimates and to a better understanding of 

the behavior of collocation for solving integral equations with a leading Cauchy 

singularity. Using the method of collocation for discontinuous downwash, our 

theoretical estimates predict errors no better than 0(1/N) where N is the number 

of basis functions. In practice this works out to l-2% error using collocation 

alone with the maximum number of basis functions (presently twenty-four). We 

have shown in this work that such errors can be reduced by several orders of 

magnitude using Richardson extrapolation; for essentially the same amount of 

arithmetic, error reduction by factors of 500 have been achieved. Furthermore, 

the method of extrapolation appears to work equally well for steady and unsteady 

flow. To demonstrate this technique, we have presented accurate numerical re- 

sults for an airfoil in a ventilated tunnel with a three quarter chord flap 

oscillating at high frequencies up to and beyond resonance. 

We have also shown that Bland's collocation method can be made much more effi- 

cient by identifying the singularities in the kernel and integrating them separate- 

ly with suitable quadrature rules. In the case of incompressible flow in free air, 

we have demonstrated with TWODI using five basis functions for continuous down- 

washes, that six decimal accuracy can be obtained uniformly for steady and unsteady 

flow with little increase in computer time. 

The applicability of TWODI has been extended by incorporating the kernel (4.13) 

for steady flow in porous wall tunnels. The complete computational solution to this 

problem is presented for unit downwash, and solutions for other downwashes can be 

obtained at will. 

The practical utility of TWODI has been improved by the incorporation of a 

completely new input module. The entire program has been coded in ANSI FORTRAN 

and is available for general use. Complete user instructions and a set of sample 

problems are provided in this report. 
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Several areas of future research appear to be particularly promising at 

the present time. From a practical standpoint, the method of extrapolation 

should be incorporated into the solution process for airfoils with flaps and 

preliminary steps should be undertaken toward automatic accuracy control in 

the future. Additional progress remains to be made through more efficient 

integration of singularities in the kernel, and in the actual computation of 

the kernel as well. The entire problem of boundary conditions at ventilated 

wind tunnel walls remains open to research, and the possibility of using 

nonlinear integral equation methods for transonic flow is an intriguing one. 

Also, the study of-solution methods other than collocation, both theoretically 

and computationally, can be expected to be useful in the future. 

While a general and fully satisfactory theory of unsteady wind tunnel 

interference effects does not yet exist, the present work should increase 

our practical computational capability and we hope it will add to the re- 

liability and precision of aerodynamic testing. 

Addendum Added in Proof 

Since the writing of this report, the TWODI program has been extended to 

provide automatic extrapolation and to utilize the improvements arising from 

the reformulation of the Possio kernel described in section 12. These changes 

are reflected only in the user instructions and sample input/output found in 

section 9 and the Appendix. 
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APPENDIX 

This appendix provides example TIMESHARE input and output for three problems. 

Responses by the user are underlined for ease .of identification. 

The first problem is entirely defaulted and produces results which agree to 

6 decimals with the exact Sghngen and Kissner-Schwarz solutions [5] (Problem one 

is listed to display the initial default values.) The second problem is chosen to 

verify Bland's results [ 81 for an airfoil oscillating about the 42.5% chord in a 

closed wall tunnel at M=.85. The second problem is not listed and another problem 

is not immediately entered. Computer execution then occurs and the printed output 

follows. 

To demonstrate the modification of old problems into new ones, a new problem 

one is next defined as the old problem twoand thenedited. The new problem one uti- 

lizes five methods of solution. The first method merely demonstrates checking the 

airfoil polynomials. Methods 2-4, if extrapolated with (11.51), will show that CL& 

of a thin symmetrical airfoil for a flap hinged at the 75% chord in a ventilated 

wind tunnel with n=550/180, ~=2.0137, and M=.5 is given by 

% = 3.204, (A-1) 

which matches experimental results [68, Table 41, and is predicted by method 5 

using automatic extrapolation. 
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THIS Is TWODI-1’11 
FOR I:~EF’Al!LT TO INITIRL OR MOST RECENTLY DEFINEII UALl!ES 

TYPE D FOLLOWl3 EY CARRIAC;E RETURN IF IN TIMESHRRE: AND ENTER 
f-iN OTHERWISE BLANK CARD WITH A 11 IN COLUMN 1 l’F IN BATCH, 
IF l’N TIMESHARE TYPE: I-IRLT TO STOP. 
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SAMPLE F’ROBLEM 

-,800000 
l 200000 

TIMESHARE - T 
LINES PiZR PAGE = 66 

FOURIER = T 
SECTION = ‘I 

woIF’I(’ = F 

10 F’RESSURE POINTS 
-*600000 -*400000 -,200000 

,400000 l 600000 ,800OOO 

1 MACH NUMBERS 
0 

0 
1 l 000000 

2 REDUCED FREQUENCIES 
0 

1 l 000000 

:L HEIGHT TO CHOR1~‘RATIOS 
INF’INITY 

1 WIND TUNNEL MASS EFFECT VENTILATION CUEFFICIENTS 
INF1'N1'TY 

1 Wl’ND TUNNEL VISCOUS EFFECT ‘JENTILATION COEFFICIENTS 
0 

3 CHORDWISE NODES 
-:I. + 000000 0 1 .oooooo 

3 MODE SHAF’ES 
MOIIE :t 

.564190 a564190 ,564:LYO 
MOJIIE 2 

-- * 564190 ,564190 1.692569 
MODE 3 

et564190 -.564190 2.8209413 

0 HINGE LOCATIONS 

1 METHO OF SOLUTION 
SOLUTION PARAMETERS FOR METHOD 1 
Ij,= 3 :[2= 5 I3= 0 H1 =: 0 K2 SE 

-10 YOU WANT TO MAKE CHANGES 
JliJ 
‘10 YOU WANT TO ENTER ANOTHER F’ROBLEM 
YES 
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TO flODIFY OR RETAIN AN OLD F’ROBLEMP ENTER ITS NUMBER 
OTHERWISE TYPE D FOLLOWED BY CARRIAGE RETURN 

?& 
ENTER TITLE 

‘? VEf?IFICATION OF RESULTS IN BLAmM S_IAM J AF’F’L MATH 18(4) -830-848 15’70 
ENTER OUTF’UT COMBINATION OF FOUFtIEFi’r SECTION AND WORK 

? SECTION 
ENTER LIST OF PRESSURE POINTS 

? 0 
EKTEFi’ LIST OF MACH NUMBERS 

‘? 1 +85 
ENTER LIST OF FRERUENCIES 

7 3 0 +l r2 
ENTER LIST OF HEIGHT TO CHORD RATIOS 

? I 7,s 
ENTER Ll’ST OF MASS EFFECT VENTILATION COEF’I-ICl’ENTS 

?r! 
ENTER LIST OF VISCOUS EFFECT UENTILATIGN COEFFICIENTS 

?q 
ENTER LIST OF NODES 

7 2 -1 1 
ENTER NUMBER UF MODE SHAF’ES 

71 
ENTER MODE SHAF’E 1 

--? -*85 1*15 
‘ENTER LIST OF NODE NUMBERS OF HINGES 
?& 

ENTER NUMBER Ol= METHODS OF SOLUTION 
7 D 

E??TER SOLUTION F’AIIAMETERS FOR METI-11311 1 
? D 

DE YOU WANT THE INPUT IlATA LI:STED 
?N 

DO YOU WANT TO MAKE CHANGES 
7 NC) 

DOYOU WANT TO ENTER ANOTHER F’ROBLEM 
? NO - 
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SAMF’LE F’IIOBl...EM 

MACH := 0 tiaucm ~twcwE~c~ := 0 I-‘Fi’E,- AIR 

S@LlI’l-ION EY COLLOCATION+ NUMBER ()F R&,SIS F’ljNC’rI(‘Jl~$ 2:: 5 

FC)URIER COEFFICIENTS OF PRESSURE 11l.lE TO BISPLRCEMENT MODE 1 
0 0 
0 0 
0 0 
0 0 
0 0 

RE:l?OKlYNRMIC NORM OF F’RESSURE FUNCTION = 0 

I-‘C!IJI?IER C:OEI=I=:ICIENTS OF PRESSURE DUE TO D:CSI"l.-I?IC:EME:N'T MODE 2 
2+00000000 0 

0 0 
0 0 
0 0 
0 0 

AERODYNAMIC NORM OF PRESSURE FUNCTION =: 2,OOOOOOOO 

i-‘ou~4Im COEFFICIENTS OF PRE:SSURE rlufz To rIIsw-.fxEMEN'r tami 3 
6 l 00000000 0 

4 l 00000000 0 

l 00000000 0 

* 00000000 0 

-- t 00000000 0 

AEIIOKIYNAMIC NORM OF F'RESSURE FuNCTIClN =: 7.21110255 

MODE COEFF 
1 LIl:T 
1 F’1:TCl-l 
1 x CF’ 
2 LIFT 
2 PITCH 
2 x CF 
3 LIFT 
3 F’ITCH 
:3 X CF 

SECTION AIix.ofm COEFFICIENTS 
REAL IMAGINARY MAGNITUDE 

0 0 0 
0 0 0 

* 25000000 0 + 25000000 
7eO8981540 0 7,08981540 

0 0 0 
l 25000000 -0 ,25000000 

21.26944621 0 21.26944621 
-3.54490770 0 3r54490.770 

.58333333 -0 ,58333333 

PHASE ANGLE 
0 
0 
0 
0 
0 
0 
0 

-l80,00 
0 
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MODE 
3. 
1 
1 
l 
l 
3. 
I 
1 
I 
1 
2 
2 
a 
2 

2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

X x/c 

-.80000 ,10000 
-.60000 I20000 
- ,40000 l 30000 
-,20000 + 40000 

0 I50000 
,20000 + 60000 
+ 40000 l 70000 
,600OO + 80000 
,800OO + 90000 

1+00000 1 l ooooo 
-+80000 ,10000 
-+60000 + 20000 
- l 40000 ,30000 
- .20000 ,40000 

0 + 50000 
+ 20000 .60000 
,40000 l 70000 
t 60000 .SOOOO 
t 80000 ,90000 

1*00000 3. + 00000 
- + 80000 + 10000 
-,60000 l 20000 

-+ 40000 + 30000 
-+20000 + 40000 

0 ,50000 
l 20000 l 60000 
.40000 t 700!~0 
+ 60000 l 80000 

+ 80000 + 90000 
l + 00000 1 l ooooo 

PRESSURES 
REAL IMAGINAHY 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

% 3 + 54055 0 
9.02703 0 
6+8945l 0 
5.52791 0 
4.51352 0 
3+68527 0 
2.Y5479 0 
2.25676 0 
1+50451 0 

0 0 
24,37299 0 
23,47029 0 
23,44134 0 
23*~%7~1 
&67i8 

0 
0 

2:1. + 37457 0 
19+50162 0 
l6,70001 0 
12.33695 0 

0 0 

MAGNITUKIE 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

:I. 3,54055 
9,02703 
6,89451 
5+52791 
4,51352 

3.68537 
2!.954;9 
2+25676 
1 .!“jO451 

0 
24+37299 
23 + 4:7029 
23+44134 
23,z?.172l 
22, 5675E . I 
21.37457 
1 9 + 5 0 l 6 ‘.! 1 
16,70001 
1 2 . :5 3 6 9 5 

0 

FHASE ANGLE 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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SAMPLE F’ROBL.EM 

MACH ::: 0 REDUCED FREQUENCY -: l l 00000 FREE Al: R 
SOLUTION FY COl..LOC:R’I‘ILlN, NUMBER OF BASIS FUNCTIONS ‘= 5 

l=OlJRI:EFi’ COE:FFIC:l:ENTS OF F’RESSURE WI: ‘I’0 D:[SI’t..AClF-::MENT MCIKE :I. 
__ l 3997,:t77-7 A. , “::3Y43896 
‘.- + 5 0 0 0 0 5 9 1. ‘-’ ~?G00017’~ I. 

, OOQ;)O577 * 00000160 
-.. <. 0 0 G G 0 3 :I. 6 -*00000:1.16 

c 0 fJ 6 0 ‘3 L 1. 1 :? \ l 00000056 

I?lilRTI!:lY~lr?ll?‘:IC NCIKM CIF I::‘liESSIJt’W FUNCTION = , 8;3’7:1.2’758 

I:- I ‘1 !.I !i I: E l? C I:! I;: I:: I- 1: I .: .I: E:: N -i- S 0 F 1’ Ii I: C; C; U I? E D LI E T 0 D I !j F’ I,.. A C E M E N T M 13 \‘-I 15: 2 
~ j, -7 9 4 A...- 3 8 8 3 l , 8 7 8 3. ‘? 3 5 2 0 

-” e 7 5 0 0 3. 8 6 5 z + 0 G 0 0 :I 4 6 2 
-- + ?4998.!l.R -4 00001614 
- * 0000:1.090 + 00000834 

+ OGGGO407 .- + OOOOO~‘6’~ L A 
AEI?CIDYNAMI:C fi!CJRM Cll= F’RESSIJRE:: FUNCTIKIN = 2 l 959854:?:3 

Fr:!l.JRIER COE:I-I:-1C:l:ENTS CJI:- F’liESSlJk”l:_ rtilE TO rlIsPt-.AI::I_ME:N’r mre: 3 
:3, 4.17?0243 1 . 4 / 7 2 n ‘? 6 l 9 
3, ‘75ooO:l, 1 ‘?A 4 t 0 0 0 0 6 9 6 2 
“. * 4 1. 4’ h h /’ :I. 7 :I. 9 9 ? 9 3 3 3 8 * I . 
“.’ . :I. 6 6 6 5 8 8 “5 t OOGO3832 

, 0 0 0 G 0 :I. 7 t3 --.00001?~‘9 %.L 
AEli’DD’YNAMIC blOF:M [:)I-’ I”RESSl!KE FUNCTION = 6 + 94699559 

?KIDE 

I 
I 
2 
2 
2 
3 
;3 
3 

c: 13 I’: I- 1: 
I... 1: 1::’ T 

If’ 1 I c: l-l 
x CF’ 
1.1: I” -I- 

F’ 1: ‘I’(;:Ij 
X CF 
I_ 1: F T 

I:# :r i-c: ti 
)I [:I”’ 

\ -- 5kl>TIi3N 
fZEAI_ 

-3. *416~980!5 
l 4 4 3 :I. :I. 8 7 0 
+ 47168992 

2. 7s;300%30 
0 6644’8h72 
+ 633:‘-3860 

I2 t :11345ci”5;37 
.-. 3 + 3 3 3 1? 5 2 0 8 \ L. I 

* 9.z?l54087 

A.fAL.CJRD CUEFI=ICIENTS 
1:MAGINRRY MAi<N:CTIJDE 

:I. * 7 1 ‘I? . ‘? . 6 ‘I. ,.a 3 ‘? 2 , 38OG476!5 
, (3oooo:I.57 .4431:1870 
, ” 9 9 1 7 6 . ‘? . . 7 G 5!585s4765 

6 * 6 5 fzj rj 7, 4 Q ‘, 
-.:j, L .77:,!&J58 

7 ?0903% :1.5 
1. : &?300% 1.4 

l 35878941 ,72805424 
5+23663048 13.26219937 

.’ .3 5 4 4 9 6 9 4 0 + 4. H5916424 
a 29:3;.?6671 t 9670’7959 

PHASE AblGI...E 
-- :I I:! 6 5 4 . 

-+OG 
--;32, 39 
-67,46 

69+44 
-29,53 
-23 * 26’ 
1 3 3 + 3. 5 
-17.65 
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F’RESSURES 
I:MAGINAHY 

3+h”ql.5 ..I L . 
2+43476 
1+85957 
1.49098 
I +21738 

l 99399 
.79696 
l 60869 
l 40579 

0 
4+59251 
6.67258 
7+ 85409 
8+50845 
8,753”1 L r, 
8*62050 
Se09369 
7+08436 
5,32471 

0 
-6,78906 
-3,80348 

-+ 14707 
3+863:1.6 
7+84;45 

1%+4%936 
I4,11989 
15.29776 
33.68896 

0 

MOKlE X 
:I. -+SOGOO 
1 -.60000 
I -+40000 
1 ‘- + 2GOOO 
1 0 
1 + 20000 
.I. l 4OOOG 
1 .60000 
1 +80000 
1 I +GOOOO 
2 -+Sc/OOi) 
2 -,60000 
" -+ 40000 
7 . - 2OOOG + 
2 0 
2 + 20000 
2 l 40000 
2 + 60000 
“) L * 80000 
2 1 l 00000 
..~. 
3 ‘- + SGGOG 
3 -+60000 
3 -,40000 
3 -*20000 
3 0 
;3 a ‘?0000 
3 c 4OOGG 
;3 .60000 
3 + 80000 
3 1.00000 

x/c 

l 10000 
l 20000 

* 30000 
+ 40000 
.50000 
+ 60000 
,700oo 
,800OO 
+ 90000 

10 00000 
,. :I. GO00 
+ 20000 
.3OOGO 
l 4GOOO 
+ 50000 
+ 60000 
* 70000 
+ 80000 
c 90000 

.I *ooooo 
l 10000 

l 20000 

.3OOOG 
+ 4OOGO 
+ 50000 
+ 60000 
+ 70000 
+ 80000 
+ 90000 

1 l 00000 

REAL 
-+67518 

-1.35386 c... 
-1,7”73 LL . 
-I+ 93404 
-2 + 03048 
-2,02641 
-1 ,92033 A...- 
-1.69337 . ...& 
-I + 27863 

8+39K?: 
5.05345 
3+16;4b 
1.76728 

,63055 
-,29591 

‘- 3. l 00550 

-I+44499 
-I+47486 

0 
7*40125 

12,72149 
15,68’>36 
1.7.19& 
17+fj3,$23 
:16+829%7 
I. 5,13622 
12.46017 

8+6’.‘173 L & 
0 

MAGNITUDE 
3.71404 
2+78537 
2*53491 
2,44203 
2,36746 
2,25706 
2.07904 
1 + 7984:L 
1,34148 

0 
9.56580 
Se36962 
Se46947 
8+69005 
8+77520 
8+62558 
Se15591 
7*23033 -* 
5*52519 

0 
10+04340 
13*27791 
15,68295 
17 + 62352 
19+21203 
20+33772 
20.69967 
19+73011 
ih, 17781 

n 

PHASE ANGLE 
-100*47 
-119,Ob 
-132.81 
-142*37 
-149,06 
-153,87 
-157.46 
-160,X! 
-162.39 

0 
-28,69 
-52+87 
-68,02 
-78.27 
-85+88 
- 9 1. , 9 7 
-97.08 

-1Ole53 
-105,48 

0 
42.53 
16.65 

‘4 
-,2:,“6 
-24,li 
-34el.6 
-43.01 
-50,84 
-57,80 

n 
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VERIFICATION OF RESULTS IN BLAND SIAM J AF’PL MATH 18(4) 830-848 1970 

MACH = .85000 REDUCED FREQUENCY = 0 ETA = 7.5000 
CLOSED TUNNEL WALL. 

SOLUTION BY COLLOCATION. NUMBER OF BASIS FUNCTIONS = 5 

SECTION Artx.otm COEFFICIENTS 
MODE COEFF REAL IMAGINARY MAGNITUDE PHASE ANGLE 

1 LIFT :12,235l~824 0 1 2 , 2 3511824 0 
1 I-’ 1: T C H -,038%8645 0 .03818645 -%80,00 
l X CF ,25624211 -0 r25624211 0 

UER:l’Fl:CATION OF RESULTS IN BLANK1 SIAM ,J AF’PL. MATH 18(4) 830-848 1970 

MACH = + 85000 REDUCED FRERUENCY = +10000 ETA = 7*5000 
CLOSED TUNNEL WALL 

SOLUTIOti BY C:OLLOCATI:ON + NUMBER OF HASIS FUNCTIONS = 5 

MODE 
1 
l 
3. 

SECTION ~rta..mr~ COEFFICIENTS 
COEFF REAL IMAGINARY MAGNITUDE PHASE ANGLE 

LIFT 5 + 89895953 -5,39’528821 7.99417653 42.45 
PITCH -.39062630 -+35368436 + 53638430 i37+92 

x Cl” ,262563’75 ,13’;06613 ,2;3:5878 -26.53 

VERIFICATION OF RESULTS IN BLAND SIAM J RPF’L MATH 18(4) 830-848 1970 

MACH = + 85000 REDUCED FREQUENCY = l 20000 ETA = 7*5000 
CLOSED TUNNEL WALL 

SOLUTION HY COLLOCATION+ NUMBER OF BASIS FUNCTIONS = 5 

MODE COEFF 
1 LIFT 
1 F'ITCH 
1 X CF 

SECTION fmxofw COEFFICIENTS 
REAL IMAGl’NAKY MAGNITUDE PHASE ANGLE 

5.43100764 -,22007538 5.43546476 2* 32 
-.01944215 -.78007066 .78031290 91.43 

.24552645 .28708426 .37775734 -49.46 
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M PROVIDED N IS GREATER THAN OR EQUAL TO 

TO MODIFY OR RETAIN Ati OLfi PROBLEMI ENTER ITS NUMBER 
OTHERWISE TYPE n Fouowfa BY CARRIAGE RETURN 

? 2 
Di!j YOU WANT THE INPUT DATA LISTED 
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DO YOU WANT TO ENTER ANOTHER PROBLEM 
t YES 

110 YOU WANT To MAKE CHANGES 
? YES 

130 YOU WANT TO LINE EDIT 
7 YES 

NOW OPEN FOR LINE EDITING. WHEN DONE TYPE END 
? TITLE 

ENTER TITLE 
? COMPARISON WITH TIJDEMAN Z SCHIF’PERS NLR TR 73018L 1974 
? MACH 

ENTER LIST OF MACH NUMBERS 
?lA 
? FREQUENCY 

ENTER LIST OF FREQUENCIES 
710 
7 HEIGHT 

ENTER LIST OF HEIGHT TO CHORKI RATIOS 
7 1 3+0555556 
7 MASS 

ENTER LIST OF MASS EFFECT VENTILATION COEFFICIENTS 
? 1 2.0137 
? NODES 

ENTER LIST OF NODES 
? 3 -1 .5 1 
7 MODE 

ENTER NUMBER OF MODE SHAPES 
71 

ENTER MODE SHAPE 1 
7 0 0.5 
?HINEE 

ENTER LIST OF NODE NUMBERS OF HINGES 
? 12 
‘? METHOD 

ENTER NUMBER OF METHODS OF SOLUTION 
7 5 

EWER SOLUTION PARAMETERS FOR METHOD 1 
719000 

ENTER SOLUTION PARAMETERS FOR METHOD 2 
733000 

ENTER SOLUTION PARAMETERS FOR METHOD 3 
736000 

ENTER SOLUTION PARAMETERS FOR METHOD 4 
73 12000 

ENTER SOLUTION PARAMETERS FOR METHOD 5 
?33200 
? END 

DOYOU WANT THE INPUT DATA LISTED 
?YES 
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COMPARISON WITH TIJDEMAN 8 SCHIPPERS NLK TR 7301SL 1974 

-1 +oooooo 

MODE 1 
0 

TIMESHARE = T 
LINES PER PAGE = 66 

FOURIEI? = F 
SECTION = T 

WOKK = F 

0 PRESSURE POINTS 

1 MACH NUMBERS 
.500000 

1 REJXJCED FRECXlENCIES 
0 

i HEIGHT TO CHORD RATIOS 
3,05!5556 

1 WIND TIJNNEL MASS EFFECT UENTIL.ATION COEFFICIENTS 
2.013700 

1 WIND TUNNEL VISCOUS EFFECT VENTILATION COEFFICIENTS 
0 

3 CHO!IL‘IWISE NODES 
l 500000 1+000000 

1 MODE SHAPES 

0 .500000 

1 HINGE LOCAT:[ONS 
‘I! 

5 METHODS CIF SOL.UTIC)N 
SCILUTION F’AHRMETERS FOR METHCKI 1 
I I == 1 Ii?- 9 :I: ;3 LY 0 RI = 
SOLUTION I:~‘~RAME’TERS FOR METHOD 2 
I 1. 7:: 3 Is.!- 3 .x3= 0 R:L I:: 
SOLUTION F’ARAMETERS FOR METHOKi 3 
11:: 3 1‘2z 6 I:3 = 0 li’j ‘:: 
SOLUTION F’ARAMETERS F’31? METHOD 4 
II= 3 I2 = I 2 x3= 0 Jq1 z 
SOLUl-I’ON PARAMETERS FOR METHOD 5 
1.1= 3 12 :: 3 13 = 2 RI - 

DO YOU WANT ‘TO MAKE CHANGES 
?E 

DO Y(3U WANT TO ENTE:A ANOTHER F’ROFI..l, *? 
? Ncl 
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ttttCOHPUTATIONAL CHECK OF MAJOR SUEROUTINEStdtt 

9+1 CHECKING AFP. CORRECT UALUESl THEN CURRENTLY COMPUTED VALUES, 
.2482434168 .594i373295 -.6544599169 ,5508566527 
l 2482434168 l 5941373295 -*6544599169 +5508566527 

COMPARISON WITH TIJDEMAN 8 SCHIFFERS NLR TR 73018L 1974 

MACH = ,500oo REDUCED FREQUENCY = 0 ETA - 3,0556 
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2.0137 

VISCOUS EFFECT (POROUS WALL) VENTILATION COEFFICIENT = 0 
SOLUTION BY COLLOCATION. NUMBER OF BASIS FUNCTIONS = 3 

SECTION AIRLOAD COEFFICIENTS 
MODE COEFF REAL IMAGINARY MAGNITUDE FHASE RNGL.E 

1 LIFT 2,86621003 0 2e86621003 0 
1 FITCH -.77670622 0 .77670633 -180,OO 
1 X CF l 79197439 -0 I7919745;; 0 

COMPARISON WITH TIJDEMAN Z SCHIFFERS NLR TR 73018L 1974 

MACH = l 50000 REDUCED FREQUENCY = 0 ETA = 3.0556 
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2*0137 

VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = 0 
SOLUTION BY COLLOCATION+ NUMBER OF BASIS FUNCTIONS = 6 

SECTION AIRLOAD COEFFICIENTS 
MODE COEFF REAL IMAGINARY MAGNITUDE FHRSE ANGLE 

1 LIFT 3*01589975 0 3,01589975 0 
1 FITCH -,74651846 0 + 74651.846 -%80+00 
1 X CF .745055x? -0 ,74505533 LL 0 

COMPARISON WITH TIJDEMRN 8 SCHIFPERS NLR TR 73018L 1974 

MACH = l 50000 REDUCED FREQUENCY = 0 ETA z: 3+0556 
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT ‘-’ 2,0137 

VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT = 0 
SOLUTION BY COLLOCATION+ NUMBER OF BASIS FUNCTIONS = :L:? 

SECTION AIRLOAD COEFFICIENTS 
MODE COEFF REAL IMAGINARY MAGNITUBE F’HASE ANGLE 

: FITCH LIFT 3*10514470 -,73830865 ; 3*10514470 .73830865 -%80,00 0 

1 x CF + 72553897 -0 l 72553897 0 

COMFARISON WITH TIJDEMAN 8 SCHIPF'ERS NLR TR 73OlSL 1974 

MACH = l 50000 REDUCED FREQUENCY = 0 ETA = 3,0556 
MASS EFFECT (SLOTTED WALL) VENTILATION COEFFICIENT = 2,0137 

VISCOUS EFFECT (FOROUS WALL) VENTILATION COEFFICIENT - 0 
SOLUTION RY EXTRAPOLATION, ORDER = 2 F’ERIOD == 3 

SECTION AIRLOAB COEFFICIENTS 
MODE COEFF REAL IMAGINARY MAGNITUnE PHASE ANGLE 

1 LIFT 3t2039S970 0 3,2039S970 0 
1 FITCH -+73468821 0 .73468821 --I 80 + 00 
1 X CF l 70860835 -0 l 70860835 0 

DO YOU WANT TO ENTER ANOTHER PROBLEM 
? NO - 
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